

RISC-V 生态开发板硬件手册

V1. 0

目录

一、简介	1 -
二、硬件功能模块描述	3 -
2.1 时钟	3 -
2.2 电源	4 -
2.3 指示与用户 LED	4 -
2.4 复位与用户按键	5 -
2.5 EEPROM	6 -
三、 扩展接口和跳线	7 -
3.1 Arduino 兼容的扩展接口	7 -
3.2 跳线	10 -

一、简介

CM32M433R-START 是一款基于中国移动芯昇科技 CM32M433R MCU 的 RISC-V 生态开发板,提供板载仿真器。使用 USB 与外部电源供电的接口,应对不同的电流需求。提供 3 个指示灯、3 个用户按键以及 RESET 按键等人机交互资源,且具备标准的 Arduino 兼容接口,可方便的连接外设扩展板。

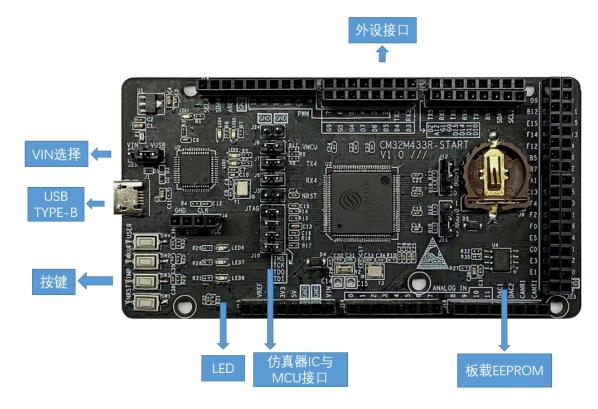


图 1-1 CM32M433R-START 开发板示意图

RISC-V 生态开发板及功能简介:

■ 微控制器: CM32M433R

- 内核: 芯来科技 N308 内核(RV32IMACFSPU)
- 主频: 144MHz
- 内存: 512KB FLASH, 144KB SRAM
- 工作电压: 1.8~3.6V
- 外设资源:

定时器(4个通用定时器,2个高级定时器,2个基本定时器)

SPI*3, IIS*2, QSPI*1, IIC*4, USART*3, UART*4, CAN*2, ADC*2, DAC*2

- 供电方式: 5V USB 或者 5V 外部直流电源
- 尺寸: 10.1 * 5.3 cm
- 外设及接口:
 - ① USB MICRO-B 接口:下载、调试、供电
 - ② 标准单排 2.54mm 排母接口: Arduino 兼容接口
 - ③ JTAG 接口:可分离 MCU 与板载调试器,使其各自可单独工作
 - ④ 按键: 复位按键*1, 用户按键*3
 - ⑤ LED: 用户 LED*3

二、硬件功能模块描述

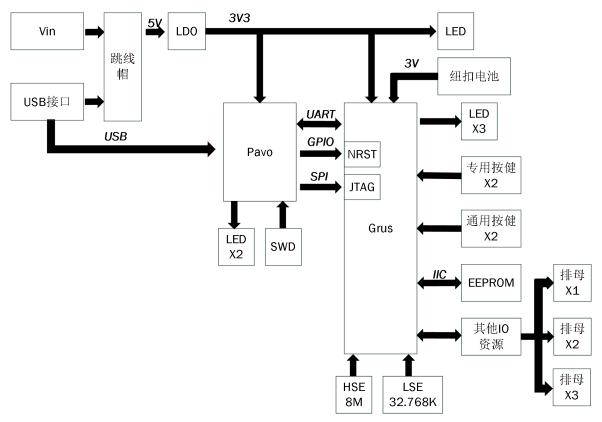


图 2-1 CM32M433R-START 开发板系统框图

2.1 时钟

开发板提供了两个 2 外部时钟源。一个 8MHz 无源晶振(Y3)作为 CM32M433R MCU 芯片的时钟源,经 MCU 片内 PLL 倍频可产生高达 144MHz 的系统时钟。另一个 32. 768kHz 的无源晶振(Y2)为 MCU 的实时时钟电 路提供低功耗精准的时钟基准。此外,用户也可以不使用外部时钟源,而只使用 MCU 内部的时钟源。

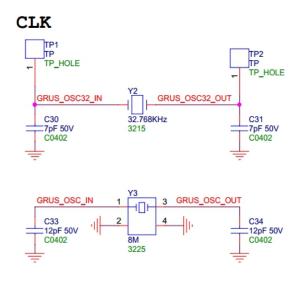


图 2-2 时钟电路

2.2 电源

RISC-V 生态开发板上 CM32M433R MCU 芯片使用单路 3.3V 电源供电,板载电源稳压电路如下图所示。

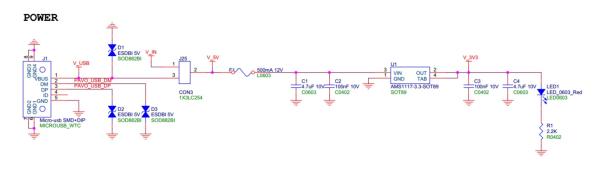


图 2-3 板载 3.3V 电源

2.3 指示与用户 LED

板载红色 LED1 指示板载 LDO 电源稳压工作正常,开发板有电源输入。

板载红色 LED6 / 绿色 LED7 / 蓝色 LED8 为用户可控的 LED,可供应用程序作为指示信息使用。

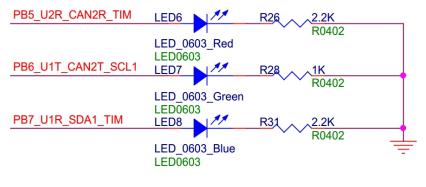
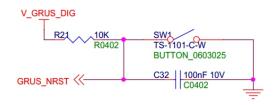



图 2-4 用户 LED

2.4 复位与用户按键

RISC-V 生态开发板提供了一个复位按键和三个用户按键,电路如下图 所示。注意用户按键有外部上拉,按下时为低电平。

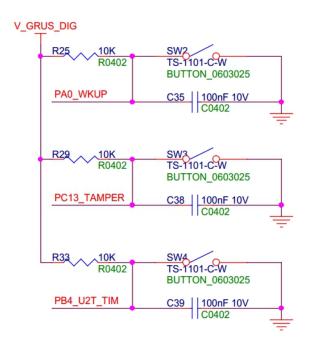


图 2-5 复位与用户按键

2.5 EEPROM

RISC-V生态开发板提供了一颗 EEPROM 芯片,容量为 256*8bit,接口为 IIC接口,板端提供上拉电阻。需要注意的是,IIC控制引脚 PC0与PC1还引出至对外的排母中,如果用户需要使用 PC0与 PC1的非 IIC功能,请自行拆掉上拉电阻 R30与 R32。

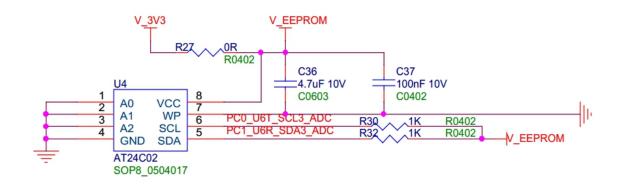


图 2-6 EEPROM

三、扩展接口和跳线

3.1 Arduino 兼容的扩展接口

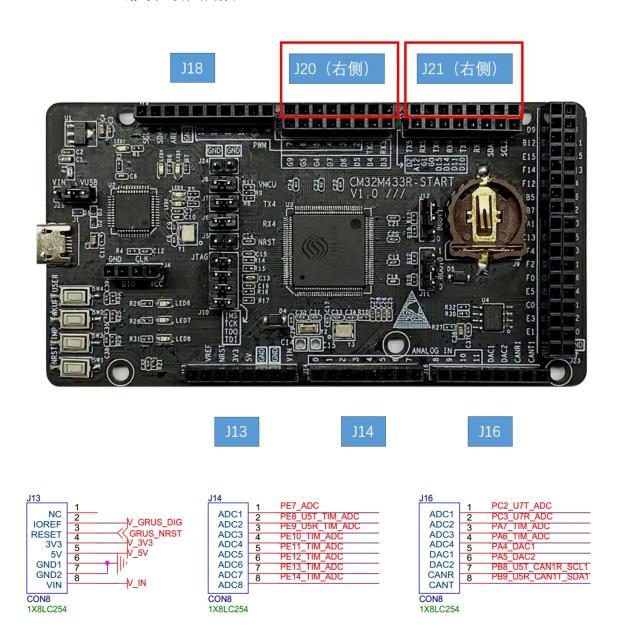


图 3-1 Arduino 兼容的扩展接口

扩展接口同 Arduino 的 UNO 及 DUE 版型物理接口相同,且引脚功能兼容,可直接连接 Arduino 接口的相关扩展板。下面分别列出了各个接口上的信号与 MCU 对应的引脚及功能说明。

		J13			J14		
序号	网络名称	默认功能	其他功能	网络名称	默认功能	其他功能	
1	NC	/	/	ADC1	PE7	/	
2	IOREF	数字参考电平	/	ADC2	2 PE8	UART5_TX, ADC,	
	IONEI	双丁罗马屯 丁	/	ADCZ		TIMER	
3	RESET	复位	/	ADC3	PE9	UART5_RX,	
	INESE I					ADC,TIMER	
4	3V3	整板 3.3V 电源	/	ADC4	PE10	ADC,IMER	
5	5V	整板 5V 电源	/	ADC5	PE11	ADC,TIMER	
6	GND1	GND	/	ADC6	PE12	ADC,TIMER	
7	GND2	GND	/	ADC7	PE13	ADC,TIMER	
8 VIN	VIN	5V 外部电源输	/	ADC8	PE14	ADC,TIMER	
8 VIIV		入	/	ADCo	rl14	ADC, HIVIER	
序号	J16			J18			
11, 2	网络名称	默认功能	其他功能	网络名称	默认功能	其他功能	
1 ADC1	PC2	UART7 TX,ADC	IIC SCL	PA9	UART1_TX,		
	ADCI	r CZ	OAKT7_TX,ADC	IIC_3CL	IIC_SCL FA9	IIC_SCL4,TIMER	
2	2 ADC2	PC3	UART7 RX,ADC	IIC SDA	A PA10	UART1_RX,	
	ADCZ	r C3	OANT/_NX,ADC	IIC_SDA		IIC_SDA4,TIMER	
3	ADC3	PA7	ADC,TIMER	DC,TIMER AREF 模拟	模拟参考	/	
	ADCS PAY ADC, TIVILIN AND		电平		/		
4	ADC4	PA6	ADC,TIMER	GND	GND	/	
5 DAC1	DAC1	DAC1 PA4	DAC	SCK/PWM 1	PC7	SPI2 SCK,TIMER	
	DACI					3FIZ_3CK, HIVIER	

6	DAC2	PA5	DAC	MISO/PW M2	PC8	SPI2_MISO,TIMER
7	CANR	PB8	UART5_TX, CAN1_RX,IIC_S CL1	MOSI/PW M3	PC9	SPI2_MOSI,TIMER
8	CANT	PB8	UART5_RX, CAN1_TX,IIC_S DA1	NSS/PWM 4	PC6	SPI2_NSS,TIMER
9			PWM5 F		PC12	UART5_TX, TIMER
10				PWM6	PA11	CAN1_RX, TIMER
序号	J20(右侧)			J21 (右侧)		
/, 3	网络名称	默认功能	其他功能	网络名称	默认功能	其他功能
1	COMP/P WM1	PB10	COMP5_INM,TI MER	UART1_TX	PB13	UART5_TX, ADC
2	COMP/ PWM2	PA3	COMP5_INP,TI MER	UART1_RX	PB14	UART5_RX, ADC
3	PWM3	PD12	ADC,TIMER	UART2_TX	PB0	UART6_TX, ADC,TIMER
4	PWM4	PB15	ADC,TIMER	UART2_RX	PB1	UARTR_RX, ADC,TIMER
5	PWM5	PA8	TIMER	UART3_TX	PC4	UART7_TX, IIC_SCL3,ADC
6	PWM6	PD13	ADC,TIMER	UART3_RX	PC5	UART7_RX, IIC_SDA3,ADC
7	UART_TX	PC10	UART3_TX, UART4_TX	IIC_SDA	PG3	IIC_SDA2
8	UART_RX	PC11	UART3_RX, UART4_RX	IIC_SCL	PG2	IIC_SCL2

表 3-1 Arduino 兼容的扩展接口

3.2 跳线

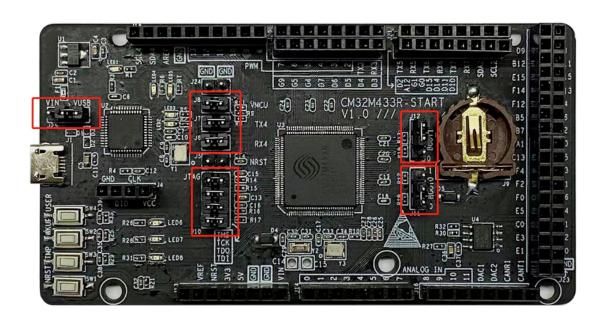


图 3-2 跳线

RISC-V 生态开发板的跳线连接选项与功能如下表所示。

跳线	说明	默认	功能
J25	VIN		USB 供电与 5V 外部电源供电二选一,区别在于 J13
	V_5V		直接器中 5V 网络的对外驱动能力。USB 供电时,驱
J25	VUSB	√ √	动能力为 1A; 5V 外部电源供电时,驱动能力最高为
			2A
J8	VSYS_3.3V	,	MCU 电源,正常使用是连接跳线帽,测试 MCU 电
Jo	VMCU_3.3V		流时,去掉跳线帽,可串接电流计
J7	LINK_UART_RX	√	MCU的 LOG信息可通过 LINK 芯片转发,最终由 USB
J/	MCU_UART_TX		口显示
J6	LINK_UART_TX	√	
10	MCU_UART_RX		
IE	LINK_IO		LINK 芯片对 MCU 复位的控制
J5	MCU_NRST		
J10	LINK_SPI_CSS	√	LINK 芯片对 MCU 的仿真、调试等功能的控制
	MCU_JTAG_TMS		
	LINK_SPI_SCK	√	
	MCU_JTAG_TCK		

	LINK_SPI_MISO	√	
	MCU_JTAG_TDO		
	LINK_SPI_MOSI	√	
	MCU_JTAG_TDI		
	HIGH_LEVEL	√	MCU 的 BOOT1 电平选择
J12	BOOT1		
	LOW_LEVEL		
	HIGH_LEVEL		MCU 的 BOOTO 电平选择
J11	воото	√	
	LOW_LEVEL		

表 3-2 跳线