
Bumblebee Processor Core
Instruction Set Architecture Manual

www.riscv-mcu.com

Copyright © 2018–2019 Nuclei System Technology.

All rights reserved.

http://www.riscv-mcu.com

www.riscv-mcu.com Page 1

Revision History

Rev. Revision Date Revised Content

1.0 2019/8/26 1. Initial Release.

www.riscv-mcu.com Page 2

Table of Contents
REVISION HISTORY... 1

LIST OF TABLES... 7

LIST OF FIGURES...8

1. INTRODUCTION OF THE INSTRUCTION SET AND CSRS OF THE BUMBLEBEE CORE.................9

1.1. INTRODUCTION OF THE RISC-V INSTRUCTION SET ARCHITECTURE...9
1.2. INSTRUCTION SUBSET SUPPORTED BY THE BUMBLEBEE CORE..9
1.3. CONTROL AND STATUS REGISTERS.. 10

2. THE PRIVILEGEMODES OF THE BUMBLEBEE CORE..11

2.1. INTRODUCTION..11
2.2. PRIVILEGEMODES.. 11
2.2.1. Machine Mode..11
2.2.2. User Mode... 11
2.2.3. Machine Sub-Mode..11
2.2.4. Read the Execution Mode...12
2.2.5. Switching from Machine Mode to User Mode..13
2.2.6. Switching from User Mode to Machine Mode..14
2.2.7. Interrupts, Exceptions and NMIs Preemption... 15

2.3. PHYSICALMEMORY PROTECTION（PMP）..16

3. EXCEPTION OPERATION OF THE BUMBLEBEE CORE.. 17

3.1. INTRODUCTION OF EXCEPTION.. 17
3.2. EXCEPTIONMASKING... 17
3.3. PRIORITY OF EXCEPTION.. 17
3.4. ENTERING EXCEPTIONHANDLINGMODE...17
3.4.1. Execute form the PC Defined by mtvec.. 18
3.4.2. Update the CSR mcause... 19
3.4.3. Update the CSR mepc... 20
3.4.4. Update the CSR mtval.. 20
3.4.5. Update the CSR mstatus...21
3.4.6. Update the Privilege Mode.. 21
3.4.7. Update the Machine Sub-Mode...21

3.5. EXIT THE EXCEPTIONHANDLINGMODE.. 22
3.5.1. Executing form the Address Defined by mepc..23
3.5.2. Update the CSR mstatus...24
3.5.3. Update the Privilege Mode.. 24
3.5.4. Update the Machine Sub-Mode...24

3.6. EXCEPTION SERVICE ROUTINE.. 25

www.riscv-mcu.com Page 3

3.7. EXCEPTION PREEMPTION... 25

4. NMI OPERATION OF THE BUMBLEBEE CORE...26

4.1. INTRODUCTION OF NMI...26
4.2. NMI MASKING..26
4.3. ENTERING NMI HANDLINGMODE..26
4.3.1. Execute from the PC Defined by mnvec... 27
4.3.2. Update the CSR mepc... 27
4.3.3. Update the CSR mcause... 28
4.3.4. Update the CSR mstatus...28
4.3.5. Update the Privilege Mode.. 29
4.3.6. Update the Machine Sub-Mode...29

4.4. EXIT THE NMI HANDLINGMODE... 29
4.4.1. Executing from the Address Defined by mepc..30
4.4.2. Update the CSR mstatus...31
4.4.3. Update the Privilege Mode.. 31
4.4.4. Update the Machine Sub-Mode...31

4.5. NMI SERVICE ROUTINE... 32
4.6. NMI/EXCEPTION PREEMPTION...32
4.6.1. Enter NMI/Exception Preemption... 33
4.6.2. Exit NMI/Exception Preemption.. 35

5. INTERRUPT OPERATION OF THE BUMBLEBEE CORE..38

5.1. INTRODUCTION OF INTERRUPT.. 38
5.2. ENHANCED CORE LOCAL INTERRUPT CONTROLLER （ECLIC）... 38
5.3. INTERRUPT TYPE...39
5.3.1. External Interrupt...39
5.3.2. Internal Interrupt... 39

5.4. INTERRUPTMASKING... 40
5.4.1. Global Interrupt Masking..40
5.4.2. Specified Interrupt Masking..41

5.5. INTERRUPT LEVELS, PRIORITIES AND ARBITRATION.. 41
5.6. ENTERING INTERRUPTHANDLINGMODE... 41
5.6.1. Execute from a new PC...42
5.6.2. Update the Privilege Mode.. 43
5.6.3. Update the Machine Sub-Mode...43
5.6.4. Update the CSR mepc... 43
5.6.5. Update the CSRs mcause and mstatus.. 44

5.7. EXIT THE INTERRUPTHANDLINGMODE...46
5.7.1. Executing from the Address Defined by mepc..47
5.7.2. Update the CSRs mcause and mstatus.. 47
5.7.3. Update the Privilege Mode.. 48

www.riscv-mcu.com Page 4

5.7.4. Update the Machine Sub-Mode...48
5.8. INTERRUPT VECTOR TABLE.. 48
5.9. CONTEXT SAVING AND RESTORING... 49
5.10. INTERRUPT RESPONSE LATENCY..50
5.11. INTERRUPT PREEMPTION... 50
5.12. INTERRUPT TAIL-CHAINING...51
5.13. VECTORED ANDNON-VECTORED PROCESSINGMODE OF INTERRUPTS...52
5.13.1. Non-Vectored Processing Mode..52
5.13.2. Vectored Processing Mode...58

6. THE TIMER AND THE ECLIC UNIT OF THE BUMBLEBEE CORE...63

6.1. INTRODUCTION OF THE TIMER UNIT...63
6.1.1. TIMER Introduction... 63
6.1.2. TIMER Registers... 63
6.1.3. Time Counter Register mtime... 64
6.1.4. Pause the Timer Counter through mstop.. 64
6.1.5. Generate the Timer Interrupt through mtime and mtimecmp..65
6.1.6. Generating the Software Interrupt through msip...65

6.2. THE ECLIC UNIT... 66
6.2.1. Introduction of the ECLIC unit..66
6.2.2. ECLIC interrupt target...67
6.2.3. ECLIC Interrupt Source... 68
6.2.4. ECLIC Interrupt Source ID..69
6.2.5. ECLIC Registers...70
6.2.6. ECLIC Interrupt Enable Bit (IE)...73
6.2.7. ECLIC Interrupt Pending Bit（IP）...73
6.2.8. ECLIC Interrupt Source Level or Edge-Triggered Attribute... 74
6.2.9. ECLIC Interrupt Level and Priority... 75
6.2.10. ECLICI Interrupt Vectored and Non-Vectored Processing Mode...78
6.2.11. ECLIC Interrupt Threshold Level... 78
6.2.12. ECLIC Interrupt Arbitration Mechanism... 78
6.2.13. ECLIC Interrupt Taken, Preemption and Tail-Chaining..79

7. BUMBLEBEE CORE CSRS DESCRIPTIONS...80

7.1. BUMBLEBEE CORE CSRS OVERVIEW...80
7.2. BUMBLEBEE CORE CSRS LIST..80
7.3. ACCESSIBILITY OF CSR IN THE BUMBLEBEE CORE... 82
7.4. BUMBLEBEE CORE RISC-V STANDARD CSR.. 82
7.4.1. misa... 83
7.4.2. mie..84
7.4.3. mvendorid.. 84
7.4.4. marchid... 84

www.riscv-mcu.com Page 5

7.4.5. mimpid.. 84
7.4.6. mhartid... 84
7.4.7. mstatus..85
7.4.8. The mie field in mstatus... 85
7.4.9. The MPIE and MPP fields in mstatus.. 86
7.4.10. The FS field in mstatus... 86
7.4.11. The XS field in mstatus...87
7.4.12. The SD field in mstatus...88
7.4.13. mtvec... 88
7.4.14. mtvt..89
7.4.15. mscratch..89
7.4.16. mepc...90
7.4.17. mcause...90
7.4.18. mtval (mbadaddr)...91
7.4.19. mip... 91
7.4.20. mnxti..92
7.4.21. mintstatus...93
7.4.22. mscratchcsw...93
7.4.23. mscratchcswl..94
7.4.24. mcycle and mcycleh.. 95
7.4.25. minstret and minstreth.. 95
7.4.26. cycle and cycleh... 96
7.4.27. instret and instreth... 96
7.4.28. time and timeh... 96
7.4.29. mcounteren...97

7.5. BUMBLEBEE CORE CUSTOMIZED CSR... 97
7.5.1. mcountinhibit...97
7.5.2. mnvec.. 98
7.5.3. msubm...98
7.5.4. mmisc_ctl... 99
7.5.5. msavestatus..99
7.5.6. msaveepc1 and msaveepc2.. 100
7.5.7. msavecause1 and msavecause2.. 100
7.5.8. pushmsubm.. 100
7.5.9. mtvt2... 101
7.5.10. jalmnxti... 101
7.5.11. pushmcause.. 102
7.5.12. pushmepc.. 102
7.5.13. sleepvalue... 102
7.5.14. txevt... 103
7.5.15. wfe..103

www.riscv-mcu.com Page 6

8. BUMBLEBEE LOW-POWERMECHANISM..104

8.1. ENTER THE SLEEPMODE... 104
8.2. EXIT THE SLEEPMODE.. 105
8.2.1. Wake Up by NMI...105
8.2.2. Wake Up by Interrupt.. 105
8.2.3. Wake Up by Event...106
8.2.4. Wake Up by Debug Request.. 106

8.3. WAIT FOR INTERRUPTMECHANISM.. 106
8.4. WAIT FOR EVENTMECHANISM..107

www.riscv-mcu.com Page 7

List of Tables
TABLE 3-1 EXCEPTION CODE IN MCAUSE... 19
TABLE 6-1 THE MAPPED ADDRESSES OF REGISTERS IN THE TIMER UNIT...63
TABLE 6-2 MSTOP BIT ASSIGNMENT... 64
TABLE 6-3 MSIP BIT ASSIGNMENTS...65
TABLE 6-4 ECLIC INTERRUPT SOURCES AND ASSIGNMENT..69
TABLE 6-5 ECLIC REGISTERS MEMORY MAP... 70
TABLE 6-6 CLICCFG BIT ASSIGNMENTS... 71
TABLE 6-7 CLICINFO BIT ASSIGNMENTS..71
TABLE 6-8 MTH BIT ASSIGNMENTS... 71
TABLE 6-9 CLICINTIP[I] BIT ASSIGNMENTS.. 72
TABLE 6-10 CLICINTIP[I] BITS ASSIGNMENT.. 72
TABLE 6-11 CLICINTATTR[I] BITS ASSIGNMENTS.. 72
TABLE 7-1 CSR SUPPORTED IN THE BUMBLEBEE CORE.. 80
TABLE 7-2 MSTATUS REGISTER... 85
TABLE 7-3 MTVEC REGISTER... 89
TABLE 7-4 MTVT ALIGNMENT..89
TABLE 7-5 MEPC REGISTER... 90
TABLE 7-6 MCAUSE REGISTER...91
TABLE 7-7 MINSTATUS REGISTER..93
TABLE 7-8 MCOUNTEREN REGISTER... 97
TABLE 7-9 MCOUNTINHIBIT REGISTER... 97
TABLE 7-10 MSUBM REGISTER.. 98
TABLE 7-11 MMISC_CTL REGISTER... 99
TABLE 7-12 MSAVESTATUS REGISTER... 99
TABLE 7-13 MTVT2 REGISTER... 101
TABLE 7-14 SLEEPVALUE REGISTER.. 102
TABLE 7-15 TXEVT REGISTER.. 103
TABLE 7-16 WFE REGISTER... 103

www.riscv-mcu.com Page 8

List of Figures
FIGURE 3-1 THE OVERALL PROCESS OF EXCEPTION...18
FIGURE 3-2 THE CSR UPDATING WHEN ENTER/EXIT THE EXCEPTION..22
FIGURE 3-3 THE OVERALL PROCESS OF EXITING AN EXCEPTION..23
FIGURE 4-1 THE OVERALL PROCESS OFNMI...27
FIGURE 4-2 THE CSR UPDATING WHEN ENTER/EXIT THE NMI..29
FIGURE 4-3 THE OVERALL PROCESS OF EXITING AN NMI.. 30
FIGURE 4-4 TWO LEVELS OF NMI/EXCEPTION STATE SAVE STACKS..33
FIGURE 5-1 INTERRUPT TYPES..39
FIGURE 5-2 ARBITRATION AMONGMULTIPLE INTERRUPTS... 41
FIGURE 5-3 THE OVERALL PROCESS OF INTERRUPT...42
FIGURE 5-4 THE CSR UPDATING WHEN ENTER/EXIT THE INTERRUPT... 45
THE OVERALL PROCESS OF EXITING AN NMI IS SHOWN IN FIGURE 5-5.. 46
FIGURE 5-5 THE OVERALL PROCESS OF EXITING AN INTERRUPT.. 46
FIGURE 5-6 INTERRUPT VECTOR TABLE.. 49
FIGURE 5-7 INTERRUPT PREEMPTION..51
FIGURE 5-8 INTERRUPT TAIL-CHAINING..52
FEATURE 5-9 EXAMPLE FOR NON-VECTORED INTERRUPT.. 54
FIGURE 5-10 INTERRUPT PREEMPTIONS CAUSED BY THREE SEQUENTIAL NON-VECTORED INTERRUPTS................................. 56
FIGURE 5-11 INTERRUPT TAIL-CHAINING...58
FEATURE 5-12 EXAMPLE FOR VECTORED INTERRUPT... 59
FIGURE 5-13 EXAMPLE FOR VECTORED INTERRUPT SUPPORTED PREEMPTION..61
FIGURE 5-14 INTERRUPT PREEMPTIONS CAUSED BY THREE SEQUENTIAL VECTORED INTERRUPTS.. 62
FIGURE 6-1 THE STRUCT OF THE ECLIC UNIT.. 66
FIGURE 6-2 ECLIC STRUCTURE... 68
FIGURE 6-3 CLICINTCTL[I] FORMAT EXAMPLE...76
FIGURE 6-4 EXAMPLE FOR THE DECODE OF LEVEL... 77
FIGURE 6-5 EXAMPLES OF CLICCFG SETTINGS...77
FIGURE 7-1 ENCODING OF [25:0] FIELD IN MISA.. 83
FIGURE 7-2 FS FIELD STATUS ENCODE... 87

file:///C:/Users/kangl/Dropbox/Nuclei/bumblebee/Bumblebee内核指令架构手册英文版.docx

www.riscv-mcu.com Page 9

1. Introduction of the Instruction Set and CSRs of the Bumblebee Core

The Bumblebee Processor Core, or Bumblebee core for short， is a commercial RISC-V

processor core customized by Nuclei System Technology and Gigadevice for general-purpose

MCU products for IoT or other ultra-low-power applications. It is dedicated to MCU products of

model GD32VF103.

For an introduction to the hardware features of the Bumblebee Core, please refer to the

Datasheet for Bumblebee Processor Core. This documentation provides a detailed introduction

to the Bumblebee Processor Core supported instruction set architecture.

Note: The Bumblebee core used for this MCU is jointly developed by Nuclei System

Technology and Andes Technology. Nuclei System Technology provides authorization services

and technical support.

At present, Nuclei System Technology can authorize fully domestically controllable N200

series ultra-low power commercial processor core IPs, as well as other multiple series

(300/600/900 series) 32-bit or 64-bit high-performance embedded processor core IPs, and

provide customers with processor IP customization services.

Note: For more detailed information on RISC-V MCU chips, boards and

solutions, please visit the website: www.riscv-mcu.com

1.1.Introduction of the RISC-V Instruction Set Architecture

The Bumblebee Core is designed based on the RISC-V Instruction Set Manual Volume I:

User-Level ISA Version 2.2 (riscv-spec-v2.2.pdf). Users can register and access the full text

(https://riscv.org/specifications/) for free on the RISC-V Foundation website.

1.2. Instruction Subset Supported by the Bumblebee Core

RISC-V has been designed to support extensive customization and specialization. The base

integer ISA can be extended with one or more optional instruction-set extensions. The

instruction sets supported by the Bumblebee Core are the followings:

http://www.riscv-mcu.com
https://riscv.org/specifications/

www.riscv-mcu.com Page 10

RV32 Architecture: 32-bit address space, and 32-bit general purpose registers.

I: Supports 32 general purpose registers.

M: Supports the RISC-V standard multiplication and division instructions.

C: Supports the RISC-V standard compressed instructions, which reduces code size by

adding short 16-bit instruction encodings for common operations.

A: Supports the RISC-V standard atomic instructions.

According to the RISC-V standard naming convention, the combination of these above

instruction extensions can be represented as RV32IMAC.

1.3. Control and Status Registers

Some control and status registers (CSRs) are defined in the RISC-V architecture to

configure or record some execution status of the core. CSRs are registers internal to the core,

which are accessed using a dedicated 12-bit address space.

www.riscv-mcu.com Page 11

2. The Privilege Modes of The Bumblebee Core

2.1. Introduction

The Bumblebee Core is designed based on The RISC-V Instruction Set Manual Volume II:

Privileged Architecture Version 1.10 (riscv-privileged-v1.10.pdf). Users can register and access

the full text (https://riscv.org/specifications/) for free on the RISC-V Foundation website.

2.2. Privilege Modes

The Bumblebee Core supports two privilege modes:

 Machine Mode is the mandatory privilege mode, which is encoded as 0x3.

 User Mode is configurable, which is encoded as 0x0.

2.2.1. Machine Mode

Machine Mode of the Bumblebee Core has the following features:

 The privilege mode of the core is Machine Mode after a reset by default.

 Machine Mode has the accessibility to all CSRs.

2.2.2. User Mode

User Mode of the Bumblebee Core has the following features:

 User Mode only has the accessibility to a part of the CSRs. Please see Section 7.3 for

more details.

2.2.3. Machine Sub-Mode

Machine Mode of the Bumblebee Core has 4 sub-mode, named Machine Sub-Mode:

https://riscv.org/specifications/

www.riscv-mcu.com Page 12

 Normal Mode (Encoded as 0x0):

 The core is in this sub-mode after a reset. The core will work in this sub-mode until

it encounters an exception, NMI or interrupt.

 Exception Handling Mode (Encoded as 0x2):

 The core is in this sub-mode when it is handling an exception.

 Please see Chapter 3 for details about the exception operation.

 NMI Handling Mode (Encoded as 0x3）：

 The core is in this sub-mode when it is handling an NMI.

 Please see Chapter 4 for details about the NMI operation.

 Interrupt Handling Mode（Encoded as 0x1）：

 The core is in this sub-mode when it is handling an interrupt.

 Please see Chapter 5 for details about the interrupt operation.

The TYP field of the CSR msubm indicates the current Machine Sub-Mode of the core.

Therefore, the software can read this CSR to lookup the current Machine Sub-Mode. For more

details about the CSR msubm, please refer to the Section 7.5.3.

Note: In the RISC-V architecture, the taking of an exception, NMI or interrupt are

collectively Trap.

2.2.4. Read the Execution Mode

The key points of reading the execution mode are the following:

 According to the architecture definition of the RISC-V, there is no register can reflect

what is current privilege mode of the core, so the software cannot access the

information about current privilege mode.

 The Bumblebee Core has 4 Machine Sub-Modes which are indicated in the TYP filed of

the CSR msubm, so the software can access this CSR to read current Machine

Sub-Mode.

www.riscv-mcu.com Page 13

2.2.5. Switching fromMachine Mode to User Mode

The mret instruction can be executed directly in Machine Mode. Switching from Machine

Mode to User Mode can only be done by executing the mret instruction. As described in Section

2.2.3, the Machine Mode may be in four different status as the followings:

 If the core is in normal machine mode, the hardware behavior of executing the mret

instruction is the same as executing the mret instruction in exception handling mode,

please see Section 3.5 for details.

 Therefore, if you want to switch from Machine Mode to User Mode in normal

machine mode, you need to modify the value of the MPP field in the CSR mstatus

first, and then execute the mret instruction to complete the switching. A typical

program code looks like the followings:

/* Switch Machine sub-mode to User mode */
li t0， MSTATUS_MPP // The value of MSTATUS_MPP is 0x00001800，for the corresponding value

// of MPP, please see Section 7.4.7 for details of the fileds of mstatus.
csrc mstatus， t0 // Set the MPP filed of the CSR mstatus to 0.
la t0， 1f // Set the pc of “1” to t0.
csrw mepc， t0 // Store the value of t0 to mepc.
mret // Execute the mret instruction, then the privilege mode will be switched

// to the User Mode, and execute from the pc of “1”. (“1” is the first
// instruction executed after mret)

1: // Start address of “1”

 If the core is in exception handling mode, please see Section 3.5 for the details about the

hardware operation of mret execution.

 Commonly, mret is used to exit from exception handling mode and restore the

previous execution mode.

 If the software intends to exit from Machine Mode to User Mode (or normal

machine mode), the software needs to modify the value of MPP field of the CSR

mstatus, and then execute an mret instruction.

 If the core is in interrupt handling mode, please see Section 5.7 for the details about the

hardware operation of mret execution.

www.riscv-mcu.com Page 14

 Commonly, mret is used to exit from interrupt handling mode and restore the

previous execution mode.

 If the software intends to exit from Machine Mode to User Mode (or normal

machine mode), the software needs to modify the value of MPP field of the CSR

mstatus, and then execute an mret instruction.

 If the core is in NMI handling mode, please see Section 4.4 for the details about the

hardware operation of mret execution.

 Commonly, mret is used to exit from NMI handling mode and restore the previous

execution mode.

 If the software intends to exit from Machine Mode to User Mode (or normal

machine mode), the software needs to modify the value of MPP field of the CSR

mstatus, and then execute an mret instruction.

Note:

 Execution of mret in User Mode will raise an illegal instruction exception.

2.2.6. Switching from User Mode to Machine Mode

The Bumblebee Core can only switch from User Mode to Machine Mode by taking an

exception, interrupt or NMI:

 Taking an exception and enter exception handling mode, please see Section 3.4 for more

details.

 Note: The software can execute an ecall instruction to enter the exception handler of

ecall.

 Taking an interrupt and enter interrupt handling mode, please see Section 5.6 for more

details.

 Taking an NMI and enter NMI handling mode, please see Section 4.3 for more details.

www.riscv-mcu.com Page 15

2.2.7. Interrupts, Exceptions and NMIs Preemption

An interrupt can preempt another interrupt, and an exception can preempt another

exception, but NMI cannot preempt another NMI:

 If the core is in NMI handling mode, and it encounters another NMI, then the new

NMI will be masked. Therefore, NMI cannot preempt another NMI. Please see Section

4.6 for more details.

 If the core is in exception handling mode, and it encounters another exception, then an

exception preemption will happen. Please see Section 3.5 for more details.

 If the core is in interrupt handling mode, and it encounters another interrupt, then an

interrupt preemption will happen. Please see Section 5.11 for more details.

Preemption also happens among interrupts, exceptions and NMIs as the followings:

 If the core is in interrupt handling mode, and it encounters an exception, then the core

will enter exception handling mode.

 If the core is in NMI handling mode, and it encounters an exception, then the core will

enter exception handling mode.

 If the core is in interrupt handling mode, and it encounters an NMI, then the core will

enter NMI handling mode.

 If the core is in exception handling mode, and it encounters an NMI, then the core will

enter NMI handling mode.

 Note: The global interrupt-enable bit MIE is clear by hardwire when the core is in

exception/NMI handling mode, so the core will not take any interrupt.

The Bumblebee Core implements a “Two Levels of NMI/Exception State Save Stacks” to

ensure that the core can restore the context of the previous state before taking a preemption

between exceptions and NMIs. Please see Section 4.6 for more details.

www.riscv-mcu.com Page 16

2.3. Physical Memory Protection（PMP）

Since the Bumblebee Core is a low-power core designed for microcontrollers, it does not

support the Memory Management Unit, so all the address access operations are using physical

addresses. In order to perform memory access protection and isolation according to memory

physical address of different devices and execution privilege mode, the RISC-V standard

architecture defines a physical memory protection mechanism: Physical Memory Protection

(PMP) unit.

Note: the Bumblebee Core does not support PMP unit.

www.riscv-mcu.com Page 17

3. Exception Operation of the Bumblebee Core

3.1. Introduction of Exception

Exception mechanism, is that the processor core suddenly encounters an abnormal event

when executing the program instruction stream, and aborts execution of the current program,

and turns to handle the exception instead. The key points are as follows:

 The “abnormal event” which the core encounters is called an exception. An exception

is caused by an internal event in the core or an event during the execution of the

program, such as a hardwire failure, a program failure, or the execution of a special

system service instruction. In short, it is a core-internal issue.

 When the exception is taken, the core will enter the exception handler program.

3.2. Exception Masking

In the RISC-V architecture, exception is not maskable, which means if the core encounters

an exception, it must stop current execution and turns to handle the exception.

3.3. Priority of Exception

It is possible that the core encounters multiple exceptions at the same time, so exceptions

also have priority. The priority of the exception is shown in Table 3-1. The smaller the exception

code, the higher the priority of the exception.

3.4. Entering Exception Handling Mode

Taking an exception, hardware behaviors of the Bumblebee Core are described as below.

Note that the following operations are done simultaneously in one cycle:

 Stop the execution of the current program, and start from the PC address defined by the

CSR mtvec.

www.riscv-mcu.com Page 18

 Update the following CSR registers:

 mcause（Machine Cause Register）

 mepc（Machine Exception Program Counter）

 mtval（Machine Trap Value Register ）

 mstatus（Machine Status Register）

 Update the Privilege Mode and Machine Sub-Mode of the core.

The overall process of exception is shown in Figure 3-1.

Figure 3-1 The overall process of exception

These will be detailed in the following parts.

3.4.1. Execute form the PC Defined by mtvec

The Bumblebee Core jumps to the PC defined by the CSR mtvec after encountering an

exception.

The CSR mtvec is a both readable and writeable CSR register, so the software can modify its

www.riscv-mcu.com Page 19

value. The detailed format of this CSR is shown in Table 7-3

3.4.2. Update the CSR mcause

When the Bumblebee Core takes one exception, the CSR mcause is updated (hardware

automatically) simultaneously to indicate the type of encountered exception. The software can

read this register to query the specific cause of the exception.

The format of mcause is shown in Table 7-6, where the lower 5 bits are the encoding filed of

the exception, which is used to indicate the type of exceptions, as shown in Table 3-1.

Table 3-1 Exception Code in mcause

Exception
Code

Exception/Interrupt
Type

Sync/

Async

Description

0 Instruction address
misaligned

Sync Misaligned PC address.
Note: this type of exception will not
happen with the core which supports
the C extension.

1 Instruction access fault Sync Instruction access fault

2 Illegal instruction Sync Illegal instruction

3 Breakpoint Sync The RISC-V architecture defines the
EBREAK instruction, when the core
executes this instruction, the core
will enter to the exception handler
program. This instruction is typically
used by debugger such as setting
breakpoints.

4 Load address misaligned Sync Load access misaligned address.
Note: the Bumblebee Core does not
support misaligned memory access,
so a misaligned memory access will
cause in an exception.

5 Load access fault Unprecise
Async

Load access fault.

6 Store/AMO address
misaligned

Sync Store access misaligned address.
Note: the Bumblebee Core does not
support misaligned memory access,
so a misaligned memory access will
cause in an exception.

7 Store/AMO access fault Unprecise
Async

Store or AMO access fault

8 Environment call from
U-mode

Sync Execute ecall instruction in User
Mode.
The RISC-V architecture defines the
ecall instruction that, when the core

www.riscv-mcu.com Page 20

executes this instruction, will enter
to the exception handler program.
This instruction is typically used by
the software to force the core to
enter to the exception handling
mode.

11 Environment call from
M-mode

Sync Execute ecall instruction in Machine
Mode.
The RISC-V architecture defines the
ecall instruction that, when the core
executes this instruction, will enter
to the exception handler program.
This instruction is typically used by
the software to force the core to
enter to the exception handling
mode.

3.4.3. Update the CSR mepc

The return address when the Bumblebee Core exit the exception handler is stored in the

CSR mepc. When the core takes an exception, the hardware will update the CSR mepc

automatically, and the value in this CSR will be the return address when exit the exception

handler. After handling the exception, the PC value is restored from this CSR to return to the

execution point that was previously stopped.

Note:

 When an exception is taken into M-mode, mepc is written with the PC address of the

instruction that encountered the exception.

 Although the CSR mepc can be updated automatically encountering an exception, it is a

both readable and writeable register, so the software can modify it explicitly.

3.4.4. Update the CSR mtval

When the Bumblebee Core takes an exception, the hardware will update the CSR mtval

(Machine Trap Value Register) automatically to indicate the memory access address or

instruction encoding that caused the current exception:

 When a hardware breakpoint is triggered, or an instruction-fetch, load, or store

address-misaligned, access, or page-fault exception occurs, mtval is written with the

www.riscv-mcu.com Page 21

faulting effective address.

 On an illegal instruction trap, mtval is written with the first 32 bits of the encoding of

the faulting instruction.

3.4.5. Update the CSR mstatus

The format of the CSR mstatus is shown in Table 7-2. When the Bumblebee Core takes one

exception, the hardware will update some fields of the CSR mstatus (Machine Status Register)

automatically:

 The value of mstatus.MPIE will be updated as the previous value of mstatus.MIE before

taking the exception, as described in Section 8.2. The value of mstatus.MPIE is used to

restore the previous value of mstatus.MIE after handling the exception.

 The value of mstatus.MIE will be updated to 0 (which means the global interrupt is

disabled and all the interrupts are masked)

 The value of mstatus.MPP will be updated to the Privilege Mode before taking the

exception, as described in Section 8.2. The value of mstatus.MPP is used to restore the

previous Privilege Mode after handling the exception.

3.4.6. Update the Privilege Mode

Exceptions are handled in Machine Mode. Once an exception is taken, the privilege mode of

the core will be updated to Machine Mode.

3.4.7. Update the Machine Sub-Mode

The Machine Sub-Mode of the Bumblebee Core is indicated in the msubm.TYP filed in real

time. When the core takes an exception, the Machine Sub-Mode will be updated to exception

handling mode, so:

www.riscv-mcu.com Page 22

 The value of msubm.PTYP will be updated to the value of msub.TYP before taking the

exception, as shown in Figure 3.2. The value of msubm.PTYP will be used to restore the

value of msubm.PTYP after exiting the exception handler.

 The filed msubm.TYP is updated to exception handling mode, as shown in Figure 3.2, to

reflect the current Machine Sub-Mode is “exception handling mode”.

3.5. Exit the Exception Handling Mode

After handling the exception, the core needs to exit from the exception handler eventually.

Since the exception is handling in Machine Mode, the software has to execute mret to exit

the exception handler. The hardware behavior of the processor after executing mret instruction

is as follows. Note that the following hardware behaviors are done simultaneously in one cycle:

 Stop the execution of the current program, and start from the PC address defined by the

CSR mepc.

 Update the CSR mstatus (Machine Status Register), as described in Figure 3-2, and

update the Privilege Mode and the Machine Sub-Mode.

The overall process of exiting an exception is shown in Figure 3-3.

Figure 3-2 The CSR updating when enter/exit the exception

www.riscv-mcu.com Page 23

Figure 3-3 The overall process of exiting an exception.

These will be detailed in the following parts.

3.5.1. Executing form the Address Defined by mepc

Taking an exception, the CSR mepc is updated at the same time to store the PC value of the

instruction that encountered the exception. Through this mechanism, it means that the core

returns to the PC address of the instruction that encountered the exception when executes the

mret instruction. So that the aborted program is continued to execute.

Note: It may be necessary to update the value of mepc by software before exiting an

exception. For example, if the exception is raised by an ecall or ebreak instruction, then the value

of mepc is updated to the pc of the ecall or ebreak instruction. If the exception exit without

modify the value of mepc, then it will jump back to the ecall or ebreak instruction again, causing

an infinite loop (executing the ecall or ebreak instruction and raising a same exception). The

correct way is to change the value of mepc to the next instruction to the ecall or ebreak by

software in the exception handler. Since ecall/ebreak is a 4-byte instruction, it is reasonable to

rewrite the mepc=mepc+4.

www.riscv-mcu.com Page 24

3.5.2. Update the CSR mstatus

The format of the CSR mstatus is shown in Table 7-2. After executing one mret instruction,

the hardware will update some fields of the CSR mstatus:

 The value of mstatus.MIE is restored by the value of mstatus.MPIE.

 The value of mstatus.MPIE is updated to 1.

 The updated value of mstatus.MPP is divided into the following two cases:

 When User Mode is configured, mstatus.MPP is updated to 0x0.

 When User Mode is not configured, mstatus.MPP is updated to 0x11.

Taking an exception, the value of mstatus.MPIE will be updated to the value of mstatus.MIE

before taking the exception, as described in Figure 3-2. The value of mstatus.MIE will be

restored by the value of mstatus.MPIE after the execution of mret. Through this mechanism, it

means that after the execution of mret, the value of mstatus.MIE is restored to the previous

value before taking the exception (assuming the previous value of mstatus.MIE is 1, it means

that the global interrupt-enable bit is set).

3.5.3. Update the Privilege Mode

Taking an exception, the value of mstatus.MPP was updated to the Privilege Mode of the

core before taking the exception, and after executing the mret instruction, the value of Privilege

Mode is restored by the value of mstatus.MPP, as described in Figure 3-2. Through this

mechanism, the core is guaranteed to return to the Privilege Mode before taking the exception.

3.5.4. Update the Machine Sub-Mode

The value of msubm.TYP indicates the Machine Sub-Mode of the Bumblebee Core in real

time. After executing the mret instruction, the hardware will automatically restore the core’s

Machine Sub-Mode by the value of msubm.PTYP:

www.riscv-mcu.com Page 25

 Taking an exception, the value of msubm.PTYP is updated to the Machine Sub-Mode

before taking the exception. After executing the mret instruction, the hardware will

automatically restore the Machine Sub-Mode using the value of msubm.PTYP, as shown

in Figure 3-2. Through this mechanism, the Machine Sub-Mode of the core is restored

to the same mode before taking the exception.

3.6. Exception Service Routine

When the core takes one exception, it starts to execute the program starting at the address

defined by mtvec, and this program is usually an exception service routine. The program can

decide to jump further to the specified exception service routine by querying the exception code

in the CSR mcause. For example, if the exception code in mcause is 0x2, which indicates that

this exception is caused by an illegal instruction, then it can jump to the specific handler for

illegal instruction fault.

Note: Since there is no hardware to save and restore the execution context automatically

when take or exit an exception, so the software needs to explicitly use the instruction (in

assembly language) for context saving and restoring. Please refer to a complete exception service

routine of the specified MCU chip.

3.7. Exception Preemption

The Bumblebee Core supports two levels of NMI/Exception State Save Stacks. Please See

Section 4.6 for more details.

www.riscv-mcu.com Page 26

4. NMI Operation of the Bumblebee Core

4.1. Introduction of NMI

NMI (Non-Maskable Interrupt) is a special input signal of the processor, often used to

indicate system-level emergency errors (such as external hardware failures, etc.) After

encountering the NMI, the processor should abort execution of the current program

immediately and process the NMI error instead.

4.2. NMIMasking

In the RISC-V architecture, NMI is not maskable, which means if the core encounters an

NMI, it must stop current execution and turns to handle the NMI.

4.3. Entering NMI Handling Mode

Taking an NMI, hardware behaviors of the Bumblebee Core are described as below. Note

that the following operations are done simultaneously in one cycle:

 Stop the execution of the current program, and start from the PC address defined by the

CSR mnvec.

 Update the following CSR registers:

 mcause（Machine Cause Register）

 mepc（Machine Exception Program Counter）

 mstatus（Machine Status Register）

 Update the Privilege Mode and Machine Sub-Mode of the core.

The overall process of NMI is shown in Figure 4-1.

www.riscv-mcu.com Page 27

Figure 4-1 The overall process of NMI

These will be detailed in the following parts.

4.3.1. Execute from the PC Defined by mnvec

The Bumblebee Core jumps to the PC defined by the CSR mnvec after encountering an NMI.

The CSR mnvec has two potential values:

 When mmisc_ctl[9]=1, the value of mnvec is equal to the value of mtvec, which means
NMIs and exceptions share the same trap entry address.

 When mmisc_ctl[9]=0, the value of mnvec equals to the value of reset_vector which is
the pc value after a reset.

4.3.2. Update the CSR mepc

The return address when the Bumblebee Core exit the NMI handler is stored in the CSR

mepc. When the core takes an NMI, the hardware will update the CSR mepc automatically, and

the value in this CSR will be the return address when exit the NMI handler. After handling the

NMI, the PC value is restored from this CSR to return to the execution point that was previously

stopped.

www.riscv-mcu.com Page 28

Note:

 When an NMI is taken, the CSR mepc is updated to the PC of the next instruction of the

one encountered the NMI (Because the instruction encounters the NMI has been

executed correctly). Then after exiting the NMI, the program will continue to execute

from the next instruction of the instruction that encounters the NMI.

 Although the CSR mepc can be updated automatically encountering an NMI, it is a both

readable and writeable register, so the software can modify it explicitly.

4.3.3. Update the CSR mcause

The format of the CSR mcause is shown in Table 7-6. The Bumblebee Core will save the ID of
the trap into the CSR mcause by the hardware automatically when take a trap. The value of
mcause indicates the reason of trap. Interrupts, exceptions and NMIs all have their own
specified Trap ID. The Trap ID of NMI has two potential values:

 When mmisc_ctl[9]=1，the Trap ID of NMI is 0xfff.

 When mmisc_ctl[9]=0，the Trap ID of NMI is 0x1.

The software can recognize the Trap reason querying the Trap ID, and build the
corresponding trap handler program for different types of traps.

4.3.4. Update the CSR mstatus

The format of the CSR mstatus is shown in Table 7-2. When the Bumblebee Core takes one

NMI, the hardware will update some fields of the CSR mstatus (Machine Status Register)

automatically:

 The value of mstatus.MPIE will be updated as the previous value of mstatus.MIE before

taking the NMI, as described in Section 8.2. The value of mstatus.MPIE is used to

restore the previous value of mstatus.MIE after handling the NMI.

 The value of mstatus.MIE will be updated to 0 (which means the global interrupt is

disabled and all the interrupts are masked)

 The value of mstatus.MPP will be updated to the Privilege Mode before taking the NMI,

www.riscv-mcu.com Page 29

as described in Section 8.2. The value of mstatus.MPP is used to restore the previous

Privilege Mode after handling the NMI.

4.3.5. Update the Privilege Mode

NMI is handed in Machine Mode, so the privilege mode will be switched to Machine Mode

when the core takes an NMI.

4.3.6. Update the Machine Sub-Mode

The Machine Sub-Mode of the Bumblebee Core is indicated in the msubm.TYP filed in real

time. When the core takes an NMI, the Machine Sub-Mode will be updated to NMI handling

mode, so:

 The value of msubm.PTYP will be updated to the value of msub.TYP before taking the

NMI, as shown in Figure 4-2. The value of msubm.PTYP will be used to restore the

value of msubm.PTYP after exiting the NMI handler.

 The filed msubm.TYP is updated to NMI handling mode, as described in Figure 4-2, to

reflect the current Machine Sub-Mode is “NMI handling mode”.

Figure 4-2 The CSR updating when enter/exit the NMI

4.4. Exit the NMI Handling Mode

After handling the NMI, the core needs to exit from the NMI handler eventually, and return

www.riscv-mcu.com Page 30

to execute the main program.

Since the NMI is handling in Machine Mode, the software has to execute mret to exit the

NMI handler. The hardware behavior of the processor after executing mret instruction is as

follows. Note that the following hardware behaviors are done simultaneously in one cycle:

 Stop the execution of the current program, and start from the PC address defined by the

CSR mepc.

 Update the CSR mstatus (Machine Status Register).

 Update the Privilege Mode and the Machine Sub-Mode.

The overall process of exiting an NMI is shown in Figure 4-3.

Figure 4-3 The overall process of exiting an NMI.

These will be detailed in the following parts.

4.4.1. Executing from the Address Defined by mepc

When an NMI is taking, the mepc is updated to the PC value of the next instruction.

Through this mechanism, executing the mret instruction, the core will return to the next

www.riscv-mcu.com Page 31

instruction of the instruction encountered the NMI, and continue to execute the program.

4.4.2. Update the CSR mstatus

The format of the CSR mstatus is shown in Table 7-2. After executing one mret instruction,

the hardware will update some fields of the CSR mstatus:

 The value of mstatus.MIE is restored by the value of mstatus.MPIE.

 The value of mstatus.MPIE is updated to 1.

 The updated value of mstatus.MPP is divided into the following two cases:

 When User Mode is configured, mstatus.MPP is updated to 0x0.

 When User Mode is not configured, mstatus.MPP is updated to 0x11.

Taking an NMI, the value of mstatus.MPIE will be updated to the value of mstatus.MIE

before taking the NMI, as shown in Figure 8.2. The value of mstatus.MIE will be restored by the

value of mstatus.MPIE after the execution of mret. Through this mechanism, it means that after

the execution of mret, the value of mstatus.MIE is restored to the previous value before taking

the NMI (assuming the previous value of mstatus.MIE is 1, it means that the global

interrupt-enable bit is set).

4.4.3. Update the Privilege Mode

Taking an NMI, the value of mstatus.MPP was updated to the Privilege Mode of the core

before taking the NMI, and after executing the mret instruction, the value of Privilege Mode is

restored by the value of mstatus.MPP, as described in Figure 4-2. Through this mechanism, the

core is guaranteed to return to the Privilege Mode before taking the NMI.

4.4.4. Update the Machine Sub-Mode

The value of msubm.TYP indicates the Machine Sub-Mode of the Bumblebee Core in real

www.riscv-mcu.com Page 32

time. After executing the mret instruction, the hardware will automatically restore the core’s

Machine Sub-Mode by the value of msubm.PTYP:

 Taking an NMI, the value of msubm.PTYP is updated to the Machine Sub-Mode before

taking the NMI. After executing the mret instruction, the hardware will automatically

restore the Machine Sub-Mode using the value of msubm.PTYP, as shown in Figure 4-2.

Through this mechanism, the Machine Sub-Mode of the core is restored to the same

mode before taking the NMI.

4.5. NMI Service Routine

When the core takes an NMI, it will jump to execute the program at the address defined by

mnvec, which is usually the NMI service routine.

Note: Since there is no hardware to save and restore the execution context automatically

when take or exit an NMI, so the software needs to explicitly use the instruction (in assembly

language) for context saving and restoring. Please refer to a complete NMI service routine of the

specified MCU chip.

4.6. NMI/Exception Preemption

The Bumblebee Core has implemented self-defined Two Levels of NMI/Exception State

Save Stacks which can save up to 3-level NMI/Exception core execution states. This

implementation supports 2-level recoverable NMI/Exception preemption.

Note: Since NMI is masked when the core is in NMI handling mode, one NMI cannot

preempt another NMI. The Bumblebee Core can support 3 kinds of NMI/Exception preemption:

 An NMI preempts an exception

 An exception preempts another exception

 An exception preempts another NMI

www.riscv-mcu.com Page 33

Figure 4-4 Two Levels of NMI/Exception State Save Stacks

4.6.1. Enter NMI/Exception Preemption

When take an NMI or exception, hardware behaviors of the Bumblebee Core are described

in the Figure 4-4:

 Stop executing the current program, and jump to a new PC to execute.

 If it is an exception trap, then the jump target PC is the address defined in mtvec.

 If it is an NMI trap, then the jump target PC is the address defined in mnvec.

 Updates the following relevant CSRs’ specified fields:

 mepc: record the PC encountered the handling NMI/Exception, and can be used to

restore the PC after exiting the handling NMI/Exception.

 msaveepc1: the first level NMI/Exception State Save Stack, records the PC

encountered the first level preempted NMI/Exception which is preempted by the

handling NMI/Exception. This CSR is used to restore the value of mepc when the

core returns from the handling NMI/Exception.

 msaveepc2: the second level NMI/Exception State Save Stack, records the PC

encountered the second level preempted NMI/Exception which is preempted by the

first level preempted NMI/Exception. This CSR is used to restore the value of

msaveepc1 when the core returns from the handling NMI/Exception.

www.riscv-mcu.com Page 34

 mstatus:

 MPIE: save the value of MIE before taking the handling NMI/Exception.

 MPP: save the value of Privilege Mode before taking the handling

NMI/Exception.

 msavestatus:

 MPIE1: the first level NMI/Exception State Save Stack, records the value of MIE

when encountered the first level preempted NMI/Exception which is preempted

by the handling NMI/Exception. This CSR is used to restore the value of MPIE

when the core returns from the handling NMI/Exception.

 MPIE2: the second level NMI/Exception State Save Stack, records the value of

MIE when encountered the second level preempted NMI/Exception which is

preempted by the first level preempted NMI/Exception. This CSR is used to

restore the value of MPIE1 when the core returns from the handling

NMI/Exception.

 MPP1: the first level NMI/Exception State Save Stack, records the Privilege

Mode when encountered the first level preempted NMI/Exception which is

preempted by the handling NMI/Exception. This CSR is used to restore the

value of MPP when the core returns from the handling NMI/Exception.

 MPP2: the second level NMI/Exception State Save Stack, records the Privilege

Mode when encountered the second level preempted NMI/Exception which is

preempted by the first level preempted NMI/Exception. This CSR is used to

restore the value of MPP1 when the core returns from the handling

NMI/Exception.

 mcause: save the cause of the handling NMI/Exception.

 msavecause1: the first level NMI/Exception State Save Stack, records the trap cause

when encountered the first level preempted NMI/Exception which is preempted by

the handling NMI/Exception.

www.riscv-mcu.com Page 35

 msavecause2: the second level NMI/Exception State Save Stack, records the trap

cause when encountered the second level preempted NMI/Exception which is

preempted by the first level preempted NMI/Exception.

 msubm:

 TYP：save the trap type of the current handling NMI/Exception

 PTYP: save the trap type before taking the handling NMI/Exception.

 PTYP1: the first level NMI/Exception State Save Stack, records the Machine

Sub-Mode when encountered the first level preempted NMI/Exception which is

preempted by the handling NMI/Exception. This CSR is used to restore the

value of PTYP when the core returns from the handling NMI/Exception.

 PTYP2：the second level NMI/Exception State Save Stack, records the Machine

Sub-Mode when encountered the second level preempted NMI/Exception which

is preempted by the first level preempted NMI/Exception. This CSR is used to

restore the value of PTYP1 when the core returns from the handling

NMI/Exception.

 NMI/Exception is handling in Machine Mode, so the Privilege Mode will be switched to

the Machine Mode when the core take one NMI/Exception.

4.6.2. Exit NMI/Exception Preemption

After handling the NMI/Exception, the core needs to exit from the NMI/Exception handler

eventually, and return to execute the main program or handle the next level preempted

NMI/Exception. Before exit the current NMI/Exception handler, the relevant CSRs and core

status need to be restored by executing the mret instruction. The hardware behavior of the

processor after executing mret instruction are shown in Figure 4-4, which can be described in

short as the follows:

 Stop the execution of the current program, and start from the PC address defined by the

CSR mepc.

www.riscv-mcu.com Page 36

 Update some fields of the relevant CSRs as the follows:

 mepc (Machine Exception Program Counter): update to the value saved in

msaveepc1, which is the PC encountered the first level preempted NMI/Exception.

 msaveepc1：the first level NMI/Exception State Save Stack, update to the value of

msaveepc2, which is the PC encountered the second level preempted

NMI/Exception. mstatus（Machine Status Register）

 MPIE: update to the value of MPIE1, which is the value of MIE when the core

encountered the first level preempted NMI/Exception.

 MPP: update to the value of MPP1, which is the Privilege Mode when the core

encountered the first level preempted NMI/Exception.

 msavestatus:

 MPIE1：the first level NMI/Exception State Save Stack, update to the value of

msavestatus.MPIE2 which is the value of MIE when the core encountered the

second level preempted NMI/Exception.

 MPP1： the first level NMI/Exception State Save Stack, update to the value of

msavestatus.MPP2 which is the Privilege Mode when the core encountered the

second level preempted NMI/Exception.

 mcause (Machine Cause Register): update to the value of msavecause1 which is the

cause of the first preempted NMI/Exception.

 msavecause1: the first level NMI/Exception State Save Stack, update to the value of

msavecause2 which is the cause of the second level preempted NMI/Exception.

 msubm (Machine Sub-Mode Register)

 TYP: update to the value of msubm.PTYP which is the trap type of the handling

NMI/Exception.

 PTYP: update to the value of msubm.PTYP1 which is the trap type of the first

level preempted NMI/Exception.

www.riscv-mcu.com Page 37

 PTYP1: the first level NMI/Exception State Save Stack, updates to the value of

msubm.PTYP2 which is the trap type of the second level preempted

NMI/Exception when one mret is executed.

 According to the value of mstatus.MPP to update the Privilege Mode.

www.riscv-mcu.com Page 38

5. Interrupt Operation of the Bumblebee Core

5.1. Introduction of Interrupt

Interrupt mechanism, that is, the core is suddenly interrupted by other requests during the

execution of the current program, and the current program is stopped, and then the core turns to

handle other requests. After handling other requests, the core goes back and continue to execute

the previous program.

The key points of interrupts are the followings:

 The “other request” interrupts the processor core is called Interrupt Request. The
source of this request is called the Interrupt Source. The interrupt s0urce is usually
comes from outside the core which is called the External Interrupt Source, but some of
the interrupt sources are core-internal, which are called the Internal Interrupt
Sources.

 The program used to handle the “other request” is called the Interrupt Service Routine
(ISR).

 Interrupt mechanism is a normal mechanism, not an error situation. Once the core
receives an interrupt request, it needs to save the context of the current execution
status, which is referred as “context saving”. After processing the request, the core
needs to restore the previous status, thereby continuing to execute the previously
interrupted program, referred to “context restoring”.

 There may be multiple interrupt sources that simultaneously initiate requests to the
core, and an arbitration is needed to select one from these sources to determine which
interrupt source is prioritized. This scenario is called “interrupt arbitration”, and
different interrupts can be assigned levels and priorities to facilitate the arbitration, so
there is a concept of “interrupt level” and “interrupt priority”.

5.2. Enhanced Core Local Interrupt Controller （ECLIC）

As described in Section 7.4.13, the Bumblebee Core supports the “default interrupt mode”

and “ECLIC interrupt mode” by different software configurations. Herein only the “ECLIC

interrupt mode” is introduced.

The Bumblebee Core has implemented with the Enhanced Core Local Interrupt Controller

which can be used to manage multiple interrupt sources. All types of interrupts in the

www.riscv-mcu.com Page 39

Bumblebee Core (except for debug interrupts) are managed by ECLIC. See Section 6.2 for details

of ECLIC. See Section 5.3 for an introduction to all interrupt types supported by the Bumblebee

Core.

5.3. Interrupt Type

The types of interrupts supported by the Bumblebee Core are shown in Figure 5-1.

Figure 5-1 Interrupt Types

These will be detailed in the following parts.

5.3.1. External Interrupt

An external interrupt is an interrupt initiated from outside the core. External interrupts

allow user to connect to an external interrupt source, such as an interrupt generated by an

external device like UART, GPIO and so on.

Note: The Bumblebee Core supports multiple external interrupt sources, all of which are

managed by the ECLIC.

5.3.2. Internal Interrupt

The Bumblebee Core has several core-internal private interrupts as the followings:

www.riscv-mcu.com Page 40

 Software Interrupt

 Timer Interrupt

Note: The internal interrupts of the Bumblebee Core are also managed by the ECLIC.

5.3.2.1 Software Interrupt

The key points of the software interrupt are the followings:

 The Bumblebee Core implements a TIMER unit, and an msip register is defined in the
TIMER unit, through which software interrupts can be generated. Please see Section
6.1.6 for details.

 Note: Software interrupts are also managed by the ECLIC.

5.3.2.2 Timer Interrupt

The key points of the software interrupt are the following:

 The Bumblebee Core implements a TIMER unit, and a counter is defined in the
TIMER unit, through which time interrupts can be generated. Please see Section 6.1.5
for details.

 Note: Timer interrupts are also managed by the ECLIC.

5.3.2.3 Memory Access Error Interrupt

The key points of the interrupt conversed by “Memory Access Error Exception” are as

follows:

 When the Bumblebee Core encounters a “Memory Access Error Exception”, it dose not
generate an exception, but instead convert it to the corresponding internal interrupt,
which is handled as an interrupt.

5.4. Interrupt Masking

5.4.1. Global Interrupt Masking

Interrupts can be masked by the control bit MIE in the CSR mstatus of the Bumblebee Core.

www.riscv-mcu.com Page 41

Please see Section 7.4.8 for details.

5.4.2. Specified Interrupt Masking

For different interrupt sources, ECLIC assigns its own interrupt enable register to each

interrupt sources. Users can configure the corresponding ECLIC register to manage some

specified interrupt sources. Please see Section 6.2.6 for details.

5.5. Interrupt Levels, Priorities and Arbitration

When multiple interrupts are initiated at the same time, an arbitration is required. For the

Bumble Core, the ECLIC manages all interrupts. ECLIC assigns its own interrupt level and

priority registers to each interrupt source. Users can configure the ECLIC registers to manage

the level and priority of the specified interrupt sources. When multiple interrupts occur

simultaneously, the ECLIC will select the one has the highest priority to be taken, as shown in

Figure 5-2. Please see Section 6.2.9 for more details.

Figure 5-2 Arbitration among Multiple Interrupts

5.6. Entering Interrupt Handling Mode

Taking an interrupt, hardware behaviors of the Bumblebee Core are described as below.

Note that the following operations are done simultaneously in one cycle:

 Stop the execution of the current program, and jump to another PC to execute.

www.riscv-mcu.com Page 42

 Update the following CSR registers: mcause（Machine Cause Register）

 mepc（Machine Exception Program Counter）

 mstatus（Machine Status Register）

 mintstatus （Machine Interrupt Status Register）

 Update the Privilege Mode and Machine Sub-Mode of the core.

 The overall process of interrupt is shown in Figure 5-3.

Figure 5-3 The Overall Process of Interrupt

These will be detailed in the following parts.

5.6.1. Execute from a new PC

Each interrupt source of the ECLIC can be set to vectored or non-vectored interrupt (via the

shv filed of the register clicintattr[i]). The key points are as follows:

 If the interrupt is configured as a vectored interrupt, then the core will jump to the

www.riscv-mcu.com Page 43

corresponding target address of this interrupt in the Vector Table Entry when this

interrupt is taken. For details about the Interrupt Vector Table, please refer to Section

5.8. For details of the vectored processing mode, please refer to Section 5.13.2.

 If the interrupt is configured as a non-vectored interrupt, then the core will jump to a

common base address shared by all interrupts. For details of the non-vectored

processing mode, please refer to Section 5.13.1.

5.6.2. Update the Privilege Mode

The privilege mode will be switched to Machine Mode when the core takes an Interrupt.

5.6.3. Update the Machine Sub-Mode

The Machine Sub-Mode of the Bumblebee Core is indicated in the msubm.TYP filed in real

time. When the core takes an interrupt, the Machine Sub-Mode will be updated to interrupt

handling mode, so:

 The value of msubm.PTYP will be updated to the value of msub.TYP before taking the

interrupt as shown in Figure 5-4. The value of msubm.PTYP will be used to restore the

value of msubm.PTYP after exiting the interrupt handler.

 The filed msubm.TYP is updated to interrupt handling mode, as described in Figure 5-4,

to reflect the current Machine Sub-Mode is “interrupt handling mode”.

5.6.4. Update the CSR mepc

The return address when the Bumblebee Core exit the interrupt handler is stored in the CSR

mepc. When the core takes an interrupt, the hardware will update the CSR mepc automatically,

and the value in this CSR will be the return address when exit the interrupt handler. After

handling the interrupt, the PC value is restored from this CSR to return to the execution point

www.riscv-mcu.com Page 44

that was previously stopped.

Note:

 When an interrupt is taken, the CSR mepc is updated to the PC of the instruction that

encounters the interrupt. Then after exiting the interrupt, the program will continue to

execute from the instruction that encounters the interrupt.

 Although the CSR mepc can be updated automatically encountering an interrupt, it is a

both readable and writeable register, so the software can modify it explicitly.

5.6.5. Update the CSRs mcause and mstatus

The format of the CSR mcause is shown in Table 7-6. The Bumblebee Core will update the
CSR mcause by the hardware automatically when take a trap, as shown in Figure 5- 4, as follows:

 A mechanism is required to record the ID of the interrupt being taken.

 When an interrupt is taken by the Bumblebee Core, the field mcause.EXCCODE is

updated to the ID of the taken interrupt by the ECLIC, so the software can query the

ID of this selected interrupt by reading this register.

 The current interrupt is taken, possibly preempting the interrupt was previously being

processed (whose interrupt level is relatively lower, so it can be preempted), and a

mechanism is needed to record the interrupt level of the preempted interrupt.

 When an interrupt is taken by the Bumblebee Core, the field mcause.MPIL is

updated to the value of minstatus.MIL. The value of mcause.MPIL is used to restore

the value of mcause.MIL after handling the interrupt.

 The current interrupt is taken, a mechanism is required to record the global interrupt

enable bit and the Privilege Mode before taking the interrupt.

 When the Bumblebee Core takes an interrupt, the filed mstatus.MPIE will be

updated to the value of mstatus.MIE, and the filed mstatus.MIE will be set to 0,

www.riscv-mcu.com Page 45

which means interrupts are globally masked, and all interrupts will not be taken.

 When the Bumblebee Core takes an interrupt, the Privilege Mode of the core will be

switched to Machine Mode, and the field mstatus.MPP will be set to the Privilege

Mode before taking the interrupt.

 If the taken interrupt is a vectored interrupt, the core will jump to the corresponding

target address stored in the Vector Table Entry. For a detailed description of the

vectored interrupt processing mode, please see Section 5.13.2. In terms of the

hardware implementation, the processing of an interrupt needs to be divided into two

steps. The first step is to query the target address from the Vector Table, and then

jump to the target address in the second step. Then, it is possible that a memory access

occurs in the first step, querying the target address from the Vector Table, so a

mechanism is required to record such a special memory access error.

 When the Bumblebee Core takes an interrupt, if the interrupt is a vectored mode

interrupt, the value of mcause.minhv will be updated to 1, and then cleared to 0

when the above “two-step” operation is completed. Assuming a memory access error

occurs midway, it will raise an Instruction Access Fault exception, and the value of

mcause.minhv will be 1 assuming this bit is not cleared.

 Note: the fields mcause.MPIE and mcause.MPP are mirrored with the fields

mstatus.MPIE and mstatus.MPP. Which means normally the value of mstatus.MPIE is

always the same as the value of mcause.MPIE and the value of mstatus.MPP is the

same as the value of mcasue.MPP.

Figure 5-4 The CSR updating when enter/exit the Interrupt

www.riscv-mcu.com Page 46

5.7. Exit the Interrupt Handling Mode

After handling the interrupt, the core needs to exit from the interrupt handler eventually,

and return to execute the main program. Since the interrupt is handling in Machine Mode, the

software has to execute mret to exit the interrupt handler. The hardware behavior of the

processor after executing mret instruction is as follows. Note that the following hardware

behaviors are done simultaneously in one cycle:

 Stop the execution of the current program, and start from the PC address defined by

the CSR mepc.

 Update the following CSRs as shown in Figure 5-4:

 mstatus（Machine Status Register）

 mcause（Machine Cause Register）

 mintstatus（Machine Interrupt Status Register）

 Update the Privilege Mode and the Machine Sub-Mode.

The overall process of exiting an NMI is shown in Figure 5-5.

Figure 5-5 The overall process of exiting an interrupt

www.riscv-mcu.com Page 47

These will be detailed in the following parts.

5.7.1. Executing from the Address Defined by mepc

When an interrupt is taking, the mepc is updated to the PC value of the instruction

encountered the interrupt. Through this mechanism, executing the mret instruction, the core

will return to the instruction encountered the interrupt, and continue to execute the program.

5.7.2. Update the CSRs mcause and mstatus

The format of the CSR mcause is shown in Table 7-6. The Bumblebee Core will update the
CSR mcause when executes one mret instruction, as follows:

 When an interrupt is taken, the value of mcause.MPIL will be updated to the value of

mintstatus.MIL before taking the interrupt. The hardware will restore the value of

minstatus.MIL using the value of mcause.MPIL when executes the mret instruction to

exit the interrupt handler. Through this mechanism, the value of mintstatus.MIL is

restored to the previous value before taking the interrupt.

 When an interrupt is taken, the value of mcause.MPIE will be updated to the value of

mintstatus.MIE before taking the interrupt. The hardware will restore the value of

minstatus.MIE using the value of mcause.MPIE when executes the mret instruction to

exit the interrupt handler. Through this mechanism, the value of mintstatus.MIE is

restored to the previous value before taking the interrupt.

 When an interrupt is taken, the value of mcause.MPP will be updated to the Privilege

Mode before taking the interrupt. The hardware will restore the Privilege Mode using

the value of mcause.MPP when executes the mret instruction to exit the interrupt

handler. Through this mechanism, the Privilege Mode is restored to the previous value

before taking the interrupt.

 Note: the fields mcause.MPIE and mcause.MPP are mirrored with the fields

mstatus.MPIE and mstatus.MPP. Which means normally the value of mstatus.MPIE is

always the same as the value of mcause.MPIE and the value of mstatus.MPP is the same

www.riscv-mcu.com Page 48

as the value of mcasue.MPP.

5.7.3. Update the Privilege Mode

The hardware will update the Privilege Mode using the value of mcause.MPP automatically

after the execution of the mret instruction:

 Taking an interrupt, the value of mstatus.MPP was updated to the Privilege Mode of the

core before taking the interrupt, and after executing the mret instruction, the value of

Privilege Mode is restored by the value of mstatus.MPP. Through this mechanism, the

core is guaranteed to return to the Privilege Mode before taking the interrupt.

5.7.4. Update the Machine Sub-Mode

The value of msubm.TYP indicates the Machine Sub-Mode of the Bumblebee Core in real

time. After executing the mret instruction, the hardware will automatically restore the core’s

Machine Sub-Mode by the value of msubm.PTYP:

 Taking an interrupt, the value of msubm.PTYP is updated to the Machine Sub-Mode

before taking the interrupt. After executing the mret instruction, the hardware will

automatically restore the Machine Sub-Mode using the value of msubm.PTYP. Through

this mechanism, the Machine Sub-Mode of the core is restored to the same mode before

taking the interrupt.

5.8. Interrupt Vector Table

As shown in Figure 5-6, the interrupt vector table is an contiguous address space in the

memory, and each word of this address space is used to store the address of the interrupt service

routine corresponding to each interrupt source of the ECLIC.

The base address of the interrupt vector table is defined by the CSR mtvt. Typically, the

value of mtvt can be set to the beginning of the entire code segment.

www.riscv-mcu.com Page 49

The role of the interrupt vector table is very important. When the core takes an interrupt, no

matter a vectored or non-vectored interrupt, the hardware will eventually jump to the

corresponding PC of the interrupt service routine by querying the interrupt vector table. Please

see Section 5.13 for more details.

Figure 5-6 Interrupt Vector Table

5.9. Context Saving and Restoring

Processors based on the RISC-V architecture do not support the hardware automatic

context saving and restoring when take or exit an interrupt. So the software is required to write

the instructions (in assembly language) for context saving and restoring. Depending on whether

the interrupt is a vectored or non-vectored, the context requiring saving and restoring will vary.

Please see Section 5.13 for more details.

www.riscv-mcu.com Page 50

5.10. Interrupt Response Latency

The concept of interrupt response latency usually refers to the cycle consumed from the

time point “external interrupt source pull-up” to the time point “the first instruction in the

corresponding interrupt service routine is executed”. Therefore, the interrupt latency usually

includes the following aspects of the cycle overhead:

 The overhead of jumping to the target PC

 The overhead of context saving

 The overhead of jumping to the Interrupt Service Routine

Interrupt response latency varies depending on whether the interrupt is a vectored or

non-vectored. Please see Section 5.13 for more details.

5.11. Interrupt Preemption

While the core is handling an interrupt, there may be another new interrupt request of a

higher level, and then the core can stop the current interrupt service routine and start to taken

the new one and execute its “Interrupt Service Routine”. Hence, the interrupt preemption is

formed (that is, the previous interrupt has not returned yet, and the new interrupt is taken), and

there could be multi-level of preemptions.

Take the example in Figure 5-7 as an example:

 Assuming that the core is handling one timer interrupt and suddenly an interrupt is

initiated by button 1 and this interrupt has a higher level than the timer interrupt. The

core will stop processing the timer interrupt and start to handle the interrupt initiated

by button 1.

 Then another interrupt is initiated by button 2, which has a higher level than the

interrupt initiated by button 1, so the core will stop processing the interrupt of button 1

and start to handle the interrupt of button 2.

 After that no other higher-level interrupts arrive, the button 2 interrupt will not be

www.riscv-mcu.com Page 51

preempted, and the core can successfully complete the interrupt service routine of the

button 2 interrupt, and then return to process the button 1 interrupt.

 Completing the interrupt service routine of button 1 interrupt, the core will return to

execute the timer interrupt service routine to handle the timer interrupt.

Figure 5-7 Interrupt Preemption

Note: Assuming that the new coming interrupt request has not higher level than the

handling interrupt, then the core should not take the request immediately. The core must

complete the current interrupt service routine before take the new one. Please see Section 6.2.9

for more details.

In the Bumblebee Core, the supported method for interrupt preemption depending on

whether the interrupt is a vectored interrupt or a non-vectored interrupt. Please see Section 5.13

for more details.

5.12. Interrupt Tail-Chaining

While the core is processing one interrupt, a new interrupt request is initiated, but the level

of the new request is not higher than the handling one, so the new interrupt request cannot

preempt the handling one.

After handling the current interrupt, it is necessary to restore the context theoretically. Then

www.riscv-mcu.com Page 52

exit the interrupt service routine and return to the main program and take the new interrupt. To

take the new interrupt, it is necessary to save the context again. Therefore, there is a

back-to-back “context saving” and “context restoring”. The “tail-chaining” can save the cost of

this back-to-back “context saving” and “context-restoring”, as shown in the Figure 5-8.

Figure 5-8 Interrupt tail-chaining

As for the Bumblebee Core, only non-vectored interrupts support the operation of

tail-chaining. Please see Section 5.13 .1.1 for more details.

5.13. Vectored and Non-Vectored Processing Mode of Interrupts

As described in Section6.2.10, each interrupt source can be configured to vectored or

non-vectored processing mode (via the shv field of the register clicinattr[i]). There is obvious

difference between the vectored and non-vector processing mode, which are described in the

following part.

5.13.1.Non-Vectored Processing Mode

www.riscv-mcu.com Page 53

5.13.1.1 Feature and Latency of Non-Vectored Processing Mode

If the interrupt is non-vectored, once it is taken, the core will jump to the common base

entry shared by all non-vectored interrupts, and the address of this entry can be set by software:

 If the least significant bit of the CSR mtvt2 is 0 (power-on reset default value), the

common base address shared by all non-vectored interrupts is specified by the CSR

mtvec (ignoring the value of the lowest 2 bits). Since the CSR mtvec also indicates the

entry address of exceptions, which means exceptions and all non-vector interrupts share

the entry address.

 If the least significant bit of the CSR mtvt2 is 1, the common entry address of all

non-vectored interrupts is defined by the CSR mtvt2 (ignoring the value of the lowest 2

bits). In order to handle the interrupt as fast as possible, it is recommended to set the

least significant bit of the CSR mtvt2 to 1, which means the entry address for all

non-vectored interrupts is separated from the entry of exceptions which is defined by

the CSR mtvec.

After entering the common base entry of non-vectored interrupts, the core will start to

execute a common program, as the example shown in Feature 5-9, the program is typically as

follows:

 Firstly, save the CSR mepc, mcause, msubm into the stack. These CSR registers are

saved to ensure that subsequent preempted interruption can be handled correctly,

because taken the new interrupt will overwrite the values of mepc, mcause, msubm, so

they need to be saved into the stack first.

 Save several general-purpose registers (the execution context) into the stack.

 Then execute a self-defined instruction “csrrw ra, CSR_JALMNXTI, ra”. If there is no

pending interrupt, then this instruction will be regarded as a Nop. If there is a pending

interrupt, the core will take the following operations:

 Jump to the target address stored in Vector Table Entry and execute the

corresponding Interrupt Service Routine.

www.riscv-mcu.com Page 54

 The hardware will set the global interrupt enable bit mstatus.MIE while the core

jump to the interrupt service routine. Setting the mstatus.MIE bit, new interrupt

will be taken and form an interrupt preemption.

 In addition to jump to the Interrupt Service Routine, the instruction “csrrw ra,

CSR_JALMNXTI, ra” also generate the effect of a JAL (Jump and Link) instruction.

The hardware will update the value of the link register to the PC of this instruction

as the return address of the function. Therefore, returning from the interrupt

handler, the core will return to the instruction “csrrw ra, CSR_JALMNXTI, ra”, and

re-judge whether there is still an interrupt pending to implement the operation of

the tail-chaining.

 At the end of the interrupt service routine, the software also needs to add the

corresponding context saving and restoring operation. Before restoring the CSR

mepc, mcause, msubm, the global interrupt enable bit mstatus.mie needs to be

cleared again to ensure the atomicity of the recovery operations of mecp, mcause,

and msubm.

Feature 5-9 Example for non-vectored interrupt

www.riscv-mcu.com Page 55

Since the core need to execute a common handler before jump to the specified interrupt

service routine of the corresponding non-vector interrupt. Therefore, the cycle overhead from

the interrupt is initiated to the first instruction in the interrupt service routine is executed are

caused by the followings:

 The overhead caused by jumping to the interrupt handler which is about 4 cycles ideally.

 The overhead caused by saving CSRs mepc, mcause, msubm into the stack.

 The overhead caused by saving the context. If the architecture is RV32E, then it only

takes 8 cycles to save 8 general purpose registers; if it is RV32I architecture, then there

are 16 general purpose registers required to be saved.

 The overhead caused by jumping to the Interrupt Service Routine which is about 5

cycles ideally.

5.13.1.2 Preemption of Non-Vectored Interrupt

As mentioned above, non-vectored interrupt processing mode can always support interrupt

preemption as the example shown in Figure 5-10: assuming that the three interrupts 30, 31, 32

come sequentially, and the level of interrupt 32 is greater than the level of interrupt 31 which is

greater than the level of interrupt 30. Since then, the subsequent interrupts will preempt

interrupts that were previously processed to form interrupt preemptions.

www.riscv-mcu.com Page 56

Figure 5-10 Interrupt preemptions caused by three sequential non-vectored interrupts

www.riscv-mcu.com Page 57

5.13.1.3 Non-Vectored Interrupt Tail-Chaining

For non-vectored interrupts, the tail-chaining can save cycles overhead significantly (saving

one back-to-back context saving and restoring) since the core has to save and restore the context

when entering and exiting the interrupt service routine.

As mentioned above, in addition to jump to the interrupt service routine, the instruction

“csrrw ra, CSR_JALMNXTI, ra” in the common base handler shared by all non-vectored

interrupts also achieves the effect of JAL (Jump and Link) which means the hardware will

update the value of the Link register to the PC of this instruction as the return address.

Therefore, the core will execute the instruction “csrrw ra, CSR_JALMNXTI, ra” again when it

exits the interrupt service handler and re-judge if there is a pending interrupt to perform the

tail-chaining operation.

As the example shown in Figure 5-11: assuming the interrupts 30, 29, 28 come successively,

and “the level of interrupt 30 ” >= “the level of interrupt 29” >= “the level of interrupt 28”, then

the subsequent interrupt will not preempt the interrupt that was taken before which means no

preemption will happen, but all these subsequent interrupt will be marked as “pending”. When

the interrupt 30 has been already handled, the core will handle the interrupt 29 directly without

the intermediate “context restoring” and “context saving” procedures.

www.riscv-mcu.com Page 58

Figure 5-11 Interrupt tail-chaining

5.13.2.Vectored Processing Mode

5.13.2.1 Feature and Latency of Vectored Processing Mode

If the interrupt is vectored, once it is taken, the core will jump to the target address saved in

the Vector Table Entry directly, which is the corresponding interrupt service routine of the

interrupt, as shown in Feature 5-12.

www.riscv-mcu.com Page 59

Feature 5-12 Example for vectored interrupt

Vectored Processing Mode has the following features:

 The core will jump directly to the interrupt service routine without context saving and

restoring. Therefore, the latency of the vectored interrupt is very short. Ideally, it only

takes 6 cycles from the interrupt initiation to the execution of the first instruction of

the interrupt service routine, because the hardware only need to perform one lookup

and jump.

 For an interrupt service routine of a vectored interrupt, the indication” __attribute__

((interrupt))” is required to indicate this program is an interrupt service routine.

 In the vector processing mode, since the core does not save the context before jumping

to the interrupt service routine, theoretically the interrupt handler cannot call any

subfunction which means the handler must be a leaf function.

www.riscv-mcu.com Page 60

 If the interrupt service routine accidentally calls another subfunction, which means

the routine is not a leaf function, it will cause a function error without special

processing. In order to avoid this accidental error, as long as the indication

“__attribute__ ((interrupt))” is used to indicate this function is an interrupt

handler, the compiler will automatically detect if this function calls any subfunction.

If it calls any subfunction, the compiler will automatically insert a piece of code to

save the context. Note: in this case, although the function correctness is guaranteed,

the overhead caused by context saving will actually increase the latency of the

response of the interrupt (equivalent to the non-vectored interrupt processing) and

cause the expansion of the code size. Hence, in practice, it is not recommended to

call other subfunctions in the interrupt service routine of a vectored interrupt.

 In vector processing mode, the core does not perform any special operation before

jumping to the interrupt service routine, and the value of mstatus.mie is updated to 0

by the hardwire which means the interrupt is global disabled and no new interrupt will

be taken once the core is handling the interrupt. Therefore, the vectored processing

mode does not support interrupt preemption by default. In order to support vectored

interrupt preemption, a special stack-push operation is necessary at the beginning of

the interrupt service routine as shown in Figure 5-13:

 First save the CSRs mepc, mcause, msubm to the stack. These CSRs are saved to

ensure that subsequent interrupt preemption can perform correctly, because the

new taken interrupt will overwrite the values of mepc, mcause, and msubm, so they

need to be saved to the stack first.

 Re-enable the global interrupt enable bit, that is, set the MIE filed of the CSR

mstatus to 1. After the global interrupt enable bit is set, the new interrupt can be

taken to implement the mechanism of interrupt preemption.

 At the end of the interrupt service routine, it is necessary to add the operation of

context restoring. And before CSRs mepc, mcause, and msubm are restored from

the stack, the global interrupt enable bit must be 0 to provide the atomicity of the

restoring operation of CSRs mepc, mcause, and msubm (not interrupted by the new

interrupt).

www.riscv-mcu.com Page 61

Figure 5-13 Example for vectored interrupt supported preemption

5.13.2.2 Preemption of Vectored Interrupt

As described above, with the special processing, the vectored processing mode can support

interrupt preemption, as shown in Figure 5-14: assuming that the three interrupts 30, 31, 32

come sequentially, and the level of interrupt 32 is greater than the level of interrupt 31 which is

greater than the level of interrupt 30. Since then, the subsequent interrupts will preempt

interrupts that were previously processed to form interrupt preemptions.

www.riscv-mcu.com Page 62

Figure 5-14 Interrupt preemptions caused by three sequential vectored interrupts

5.13.2.3 Vectored Interrupt Tail-Chaining

For the vectored interrupt, the core does not save the context before jumping to the

interrupt service routine, so the meaning of “interrupt tail- chaining” is not significant.

Therefore, the vector interrupt does not support the operation of “interrupt tail-chaining”.

www.riscv-mcu.com Page 63

6. The TIMER and the ECLIC Unit of the Bumblebee Core

6.1. Introduction of the TIMER Unit

6.1.1. TIMER Introduction

The Timer Unit (TIMER) is used to generate the Timer Interrupt and Software Interrupt in

the Bumblebee Core. Please see Section 5.3.2.1 and Section 5.3.2.2 for more details about the

Timer Interrupt and the Software Interrupt.

6.1.2. TIMER Registers

The TIMER is a memory-mapped unit:

 For the base address of the TIMER unit, please refer to the Datasheet of the

Bumblebee Core.

 Registers and the corresponding offset in the TIMER unit are shown in Table 6-1.

Table 6-1 The mapped addresses of registers in the TIMER unit

Offset inside

the Unit

Accessi

bility

Register Value by

Default

Function Description

0x0 RW mtime_lo 0x00000000 Reflect the lower 32-bit value of mtime,.
Please refer to Section 6.1.3 for details.

0x4 RW mtime_hi 0x00000000 Reflect the upper 32-bit value of mtime.
Please refer to Section 6.1.3 for details.

0x8 RW mtimecmp_lo 0xFFFFFFFF Set the lower 32-bit value of mtimecmp,.
Please refer to Section 6.1.5 for details.

0xC RW mtimecmp_hi 0xFFFFFFFF Set the upper 32-bit value of mtimecmp,.
Please refer to Section 6.1.5 for details.

0xFF8 RW mstop 0x00000000 Used to pause the time counter. Please refer
to Section 6.1.4 for details.

0xFFC RW msip 0x00000000 Used to generate the Software Interrupt.
Please refer to Section 6.16 for details.

Note:
 Registers in the TIMER unit only support aligned read and write access with a size of a word.
 The address space range of registers in the TIMER unit is 0x00 ~ 0xFF. The value in the address other

than the registers listed in the above table is constant 0.

www.riscv-mcu.com Page 64

The function and use of each register are described in detail in the following parts herein.

6.1.3.Time Counter Register mtime

The TIMER unit can be used for real-timing timing, the key points are as follows:

 The TIMER implements a 64-bit register mtime, which is composed of {mtime_hi,

mtime_lo}. This register reflects the value of the 64-bit timer. The timer increments

according to the low-speed input beat signal. The timer is turned on by default, so it

will always count.

 In the Bumblebee Core, the increment frequency of the counter is controlled by the

input signal mtime_toggle_a, which is the input signal of the core. Please refer to the

Datasheet for Bumblebee Processor Core for details about this signal.

6.1.4. Pause the Timer Counter through mstop

Since the timer of the TIMER unit is automatically incremented by default after reset, in

order to turn off this timer count for some special cases, the register mstop is implemented. As

shown in Table 6-2, only the least significant bit of mstop register is an effective bit, and this bit

is used to pause the timer. Therefore, the software can pause the timer by setting the LSB of

mstop to 1.

Table 6-2 mstop bit assignment

Field Bits Accessibility Default Value Description

Reserved 7:1 Readable, write
ignored

N/A Reserved, ties to 0

TIMESTOP 0 RW 0 Control the timer count or
pause. If this field is 1, then the
timer is paused, otherwise it
increments normally.

www.riscv-mcu.com Page 65

6.1.5.Generate the Timer Interrupt through mtime and mtimecmp

The TIMER unit can be used to generate the timer interrupt, the key points are as follows:

 The TIMER implements a 64-bit register mtimecmp, which is composed of

{mtimecmp_hi, mtimecmp_lo}. This register is used as the comparison value of the

timer. If the value of mtime is greater than the value of mtimecmp, then a timer

interrupt is generated. The software can clear the timer interrupt by overwriting the

value of mtimecmp or mtime (so that the value of mtimecmp is greater than the value

of mtime).

Note: the timer interrupt is connected to the ECLIC unit for unified management. Please see

Section 6.2 for details on the ECLIC unit.

6.1.6. Generating the Software Interrupt through msip

The TIMER unit can be used to generate the Software Interrupt. The register msip is

implemented in the TIMER unit. As shown in Table 6-3, only the least significant bit of msip is

an effective bit. This bit is used to generate the software interrupt directly:

 The software generates the software interrupt by writing 1 to the msip register;

 The software clears the software interrupt by writing 0 to the msip register.

Note: the soft interrupt is connected to the ECLIC unit for unified management. Please see

Section 6.2 for details on the ECLIC unit.

Table 6-3 msip bit assignments

Field Bits Accessibility Default Value Description

Reserved 7:1 Readable, write
ignored

N/A Reserved, ties to 0

MSIP 0 RW 0 This bit is used to generate the
software interrupt

www.riscv-mcu.com Page 66

6.2. The ECLIC Unit

The Bumblebee Core supports the Enhanced Core Local Interrupt Controller (ECLIC),

which is optimized based on the RISC-V standard CLIC, to manage all interrupt sources.

Note:

 The ECLIC unit only serves one core and is private to the core.

 The ECLIC’s software programming model is backward compatible with standard

CLIC.

6.2.1. Introduction of the ECLIC unit

Figure 6-1 The struct of the ECLIC unit

The ECLIC unit is used to arbitrate multiple internal and external interrupts, send request

and support the interrupt preemption. The registers of the ECLIC are described in Table 6-5,

and its structure is shown in Figure 6-1 and the related concepts are as follows:

www.riscv-mcu.com Page 67

 ECLIC interrupt target

 ECLIC interrupt source

 ECLIC interrupt source ID

 ECLIC registers

 ECLIC interrupt enable bits

 ECLIC interrupt pending bits

 ECLIC interrupt level or edge triggered attribute

 ECLIC interrupt level and priority

 ECLIC interrupt vectored or non-vectored processing mode

 ECLIC interrupt threshold level

 ECLIC interrupt arbitration mechanism

 ECLIC interrupt response, preemption, tail-chaining mechanism

These will be detailed below.

6.2.2. ECLIC interrupt target

The ECLIC unit link the interrupt source to the processor core (as the interrupt target) by a

line as shown in Figure 6-2

www.riscv-mcu.com Page 68

Figure 6-2 ECLIC structure

6.2.3. ECLIC Interrupt Source

As shown in Figure 6-2, the ECLIC unit can support up to 4096 interrupt sources. The

ECLIC unit has defined the following features and parameters of each interrupt source:

 ID

 IE

 IP

 Level or Edge-Triggered

 Level and Priority

 Vector or Non-Vector Mode

www.riscv-mcu.com Page 69

6.2.4. ECLIC Interrupt Source ID

The ECLIC unit has assigned a unique ID to each interrupt source. For example, if a

hardware implementation of the ECLIC unit really configured to support 4096 IDs, then the ID

should be 0 to 4095. Note:

 In the Bumblebee core, the interrupt IDs ranged from 0 to 18 are reserved for the

core-specified internal interrupts.

 The interrupt source ID greater than 18 can be used by the user to bind to external

interrupt sources.

The details are shown in Table 6-4.

Table 6-4 ECLIC interrupt sources and assignment

ECLIC interrupt ID Function Interrupt Source Description

0 Reserved This source is not used in the Bumblebee Core
1 Reserved This source is not used in the Bumblebee Core
2 Reserved This source is not used in the Bumblebee Core
3 Software interrupt The software interrupt generated by the TIMER
4 Reserved This source is not used in the Bumblebee Core
5 Reserved This source is not used in the Bumblebee Core
6 Reserved This source is not used in the Bumblebee Core
7 Timer interrupt The timer interrupt generated by the TIMER
8 Reserved This source is not used in the Bumblebee Core
9 Reserved This source is not used in the Bumblebee Core
10 Reserved This source is not used in the Bumblebee Core
11 Reserved This source is not used in the Bumblebee Core
12 Reserved This source is not used in the Bumblebee Core
13 Reserved This source is not used in the Bumblebee Core
14 Reserved This source is not used in the Bumblebee Core
15 Reserved This source is not used in the Bumblebee Core
16 Reserved This source is not used in the Bumblebee Core

17 Memory access
error

The memory access error is defined as an
internal interrupt in the Bumblebee core

18 Reserved This source is not used in the Bumblebee Core

19 ~ 4095

External interrupt Normal external interrupt defined by users.
Note:
 Although the ECLIC unit can support up to

4096 interrupt sources from the
programming mode, the actual number of
supported interrupt sources is indicated in
the field clicinfo.NUM_INTERRUPT.

www.riscv-mcu.com Page 70

6.2.5. ECLIC Registers

The ECLIC is a memory-mapped unit.

 The base address of the ECLIC unit in the Bumblebee Core is introduced in the
Datasheet for Bumblebee Processor Core.

 The registers and their corresponding offset addresses in the ECLIC unit are shown in
Table 6-5.

Table 6-5 ECLIC registers memory map

Accessibility Register Width

0x0000 RW cliccfg 8-bit

0x0004 Readable, write
ignored

clicinfo 32-bit

0x000b RW mth 8-bit
0x1000+4*i RW clicintip[i] 8-bit
0x1001+4*i RW clicintie[i] 8-bit
0x1002+4*i RW clicintattr[i] 8-bit
0x1003+4*i RW clicintctl[i] 8-bit
Note:
 The above “i” indicates the interrupt ID, an interrupt i

has its own corresponding clicintip[i], clicintie[i],
clicintattr[i], and clicintctl[i] registers.

 ECLIC registers only support aligned access which is the
size of byte, half-word or word.

 The above “R” means read-only, and any write to this
read-only register will be ignored without generating bus
error.

 The ELCIC unit may not be configured to support 4096
interrupt sources. If an input i is not present in the
hardware, the corresponding clicintip[i], clicintie[i],
clicintctl[i] memory locations appear hardwired to zero.

 The address space of ECLIC registers is the range from
0x0000 to 0xFFFF. The value in an address other than
the address listed in the above table is constant 0.

These registers are detailed in the following part.

6.2.5.1 cliccfg

This cliccfg register is a global configuration register. The software can set global

configurations by write this register. Table 6-6 describes the bit assignments of this register.

www.riscv-mcu.com Page 71

Table 6-6 cliccfg bit assignments

Field Bits Accessibility Default Value Description

Reserved 7:5 RO N/A Reserved, ties to 0.
nlbits 4:1 RW 0 Used to specified the bit-width of level

and priority in the register clicintctl[i].
Please see Section 6.2.9 for more details.

Reserved 0 RO N/A Reserved, ties to 1.

6.2.5.2 clicinfo

The clicinfo register is a global info register. The software can query the global parameters

by reading this register. Table 6-7 describes the bit assignments of this register.

Table 6-7 clicinfo bit assignments

Field Bits Accessibility Default Value 描述

Reserved 31:25 RO N/A Reserved, ties to 0.
CLICINTCTLBITS 24:21 RO N/A Used to specified the

effective bit-width the
register clicintctl[i]. Please
see Section 6.2.9 for more
details.

VERSION 20:13 RO N/A Hardware implementation
version number.

NUM_INTERRUPT 12:0 RO N/A Number of interrupt
sources supported by the
hardware

6.2.5.1 mth

The mth register is used the set the target interrupt threshold level. The software can

configure the target interrupt threshold level by writing this register. Table 6-8 describes the bit

assignments of this register.

Table 6-8 mth bit assignments

Field Bits Accessibility Default Value Descriptipon

mth 7:0 RW N/A Target interrupt threshold
level register. Please see
Section 6.2.9 for more details.

www.riscv-mcu.com Page 72

6.2.5.2 clicintip[i]

The clicintip[i] register is the pending flag register for the interrupt source. Table 6-9

describes the bit assignments of this register.

Table 6-9 clicintip[i] bit assignments

Field Bits Accessibility Default Value Description

Reserved 7:1 RO N/A Reserved, ties to 0
IP 0 RW 0 Interrupt source pending

flag. Please see Section 6.2.7
for more details.

6.2.5.3 clicintie[i]

The clicintie[i] register is the enable bit register for the interrupt source. Table 6-10

describes the bit assignments of this register.

Table 6-10 clicintip[i] bits assignment

Field Bits Accessibility Default Value Description

Reserved 7:1 RO N/A Reserved, ties to 0.
IE 0 RW 0 Interrupt enable bit. Please

see Section 6.2.6 for more
details.

6.2.5.4 clicintattr[i]

The clicintattr[i] register is used to indicate the attribute of the interrupt source. The

software can configure the attribute of the interrupt source by writing this register. Table 6-11

describes the bit assignments of this register.

Table 6-11 clicintattr[i] bits assignments

Field Bits Accessibility Default Value Description

Reserved 7:6 RO N/A Reserved, ties to 2’b11
Reserved 5:3 RO N/A Reserved, ties to 0
trig 2:1 RW 0 Used to configure the level or

edge triggered attribute of the
interrupt source. Please see
Section 6.2.8 for more details.

www.riscv-mcu.com Page 73

shv 0 RW 0 Used to configure whether the
interrupt is vectored or
non-vectored. Please see Section
6.2.10 for more details.

6.2.5.5 clicintctl[i]

The clicintctl[i] register is the control register of the interrupt source. The software can

configure the level and priority by writing this register. The level and priority field are

dynamically allocated based on the value of cliccfg.nlbits. Please see Section 6.2.9 for more

details.

6.2.6. ECLIC Interrupt Enable Bit (IE)

As shown in Figure 6-2, the ECLIC unit has allocated an interrupt enable bit (IE) for each

interrupt source which is the field clicintie[i].IE whose function are the follows:

 The clicintie[i] register of each interrupt source is a both readable and writeable

memory-mapped register. Hence the software can program it.

 If the clicintie[i] register is programmed to 0, it means that this interrupt source is

masked.

 If the clicintie[i] register is programmed to 1, it means that this interrupt is enabled.

6.2.7. ECLIC Interrupt Pending Bit（IP）

As shown in Figure 6-2 , the ECLIC unit has allocated an interrupt pending bit (IP) for each

interrupt source which is the field clicintip[i].IP whose function are the follows:

 If the IP bit of one interrupt source is 1, it means this interrupt is initiated. The trigger

condition of the interrupt source depends on whether this interrupt is level-triggered

or edge-triggered as described in Section 6.2.8.

 The IP bit of the interrupt source is both readable and writeable. The behavior of the

software writing IP bits depends on whether the interrupt source is level or edge

triggered. Please see Section 6.2.8 for more details.

www.riscv-mcu.com Page 74

 For edge-triggered interrupt source, the IP bit may be cleared by the hardware itself.

Please see Section 6.2.8 for more details.

6.2.8. ECLIC Interrupt Source Level or Edge-Triggered Attribute

As shown in Figure 6-2, each ECLIC interrupt source can be configured as level triggered or

edge triggered by setting the value of clicintattr[i].trig. The key points are the followings:

 When clicintattr[i].trig[0] == 0, this interrupt source is configured as a level-triggered

interrupt.

 If the interrupt source is configured as level-triggered, the IP bit of the interrupt

source will reflect the level of the interrupt source in real time.

 If the interrupt source is configured as level-triggered, the IP bit reflects the level of

the interrupt in real time, so software writes to this IP bit is ignored, that is, the

software cannot set or clear the IP bit by the write operation. If the software needs

to clear the interrupt pending bit, it can only be done by clearing the original source

of the interrupt.

 When clicintattr[i].trig[0] == 1 and clicintattr[i].trig[1] == 0, this interrupt source is

configured as a rising edge-triggered interrupt:

 If the interrupt source is configured as rising edge-triggered, when the ECLIC

detects the rising edge of the interrupt source, the interrupt source is triggered in

the ECLIC, and the IP bit of the interrupt source is set.

 If the interrupt source is configured as rising edge-triggered, the IP bit is writeable

for the software, which means the software can set or clear the IP bit by write

operations.

 Note: for rising edge-triggered interrupt, in order to improve the efficiency of the

interrupt processing, when the interrupt is taken and the core jumps to the

interrupt service routine, the hardware of the ECLIC will clear the IP bit

automatically, and the software needs not to clear the IP bit in ISR.

 When clicintattr[i].trig[0] == 1 and clicintattr[i].trig[1] == 1, this interrupt source is

www.riscv-mcu.com Page 75

configured as a falling edge-triggered interrupt:

 If the interrupt source is configured as falling edge-triggered, when the ECLIC

detects the falling edge of the interrupt source, the interrupt source is triggered in

the ECLIC, and the IP bit of the interrupt source is set.

 If the interrupt source is configured as falling edge-triggered, the IP bit is writeable

for the software, which means the software can set or clear the IP bit by write

operations

 Note: for rising edge-triggered interrupt, in order to improve the efficiency of the

interrupt processing, when the interrupt is taken and the core jumps to the

interrupt service routine, the hardware of the ECLIC will clear the IP bit

automatically, and the software needs not to clear the IP bit in ISR.

6.2.9. ECLIC Interrupt Level and Priority

As shown in Figure 6-2, each interrupt sources of the ECLIC can be configured with

specified level and priority, and the key points are the followings:

 The register clicintctl[i] of each interrupt source is 8-bit width theoretically, and

effective bits actually implemented by the hardware are specified by the

CLICINTCTLBITS in the register clicinfo. For example, if the value of the

clicinfo.CLICINTCTLBITS field is 6, it means that only the upper 6-bit of the

clicintctl[i] register are true valid bits, and the lowest 2 bits are tied to 1, as shown in

Figure 6-3.

 Note: the field CLICINTCTLBITS is a readable constant value, and the software

cannot overwrite it. The theoretically reasonable value range of it is 2 <=

CLICINTCTLBITS <= 8. The actual value is determined by the specified hardware

implementation.

 The effective bits of clicintctl[i] register has two dynamic fields, which are used to

specify the level and the priority of the interrupt source. The width of the level filed is

defined by field nlbits in cliccfg. For example, if the value of cliccfg.nlbits is 4, it means

that the upper 4-bit of the effective bits in clicintctl[i] is the level field while the other

www.riscv-mcu.com Page 76

lower effective bits form the priority field, as shown in the example in Figure 6-3.

 Note: the field cliccfg.nlbits is both readable and writeable, which means the

software can program it.

Figure 6-3 clicintctl[i] format example

 The key points of interrupt level are the followings:

 The value of level is read in a left-aligned manner. Except the effective bits (defined

by the value of cliccfg.nlbits), the low ineffective bits are all filled with the constant 1,

as shown in the example in Figure 6-4.

 Note: if cliccfg.nlbits > clicinfo.CLICINTCTLBITS, it means that the number of

bits indicated by nlbits exceeds the effective bits of the clicintctl[i] register,

and the excess bits are all filled with the constant 1.

 Note: if cliccfg.nlbits = 0, the value of level will be regarded as a fixed value

255. As shown in Figure 6-5.

 The greater value of level, the higher priority, note:

 Higher-level interrupts can preempt lower-level interrupts resulting in an

interrupt preemption, as detailed in Section 5.11.

 If there are multiple pending interrupts (IP is 1), then the ECLIC needs to

make an arbitration to determine which interrupt needs to be sent to the core

to take. The arbitration needs to take the level of each interrupt source into the

consideration. Please see Section 5.5 for details.

www.riscv-mcu.com Page 77

Figure 6-4 Example for the decode of level

Figure 6-5 Examples of cliccfg settings

 The key points of the interrupt priority are the follows:

 The value of priority is also read in a left-aligned manner. Except the effective bits

(clicinfo.CLICINTCTLBITS - cliccfg.nlbits), the low ineffective bits are all filled with

the constant 1.

 The greater the value of the priority, the higher priority, note:

 The priority of the interrupt does not participate in the judgment of the

interrupt preemption, which means whether the interrupt can be preempted

or not has nothing to do with the value of the priority of the interrupt.

 When multiple interrupts are simultaneously pending, the ECLIC needs to

www.riscv-mcu.com Page 78

make an arbitration to determine which interrupt is sent to the core to handle.

The arbitration needs to refer to the value of priority of each interrupt source.

Please see Section 6.2.12 for details.

6.2.10. ECLICI Interrupt Vectored and Non-Vectored Processing Mode

Each interrupt source of the ECLIC can be set to vectored or non-vectored (via the shv field

of the register clicintattr[i]). The key points are the followings:

 If the interrupt is configured as vectored, the core will directly jump to the target

address stored in the vector table entry when the interrupt is taken. For a detailed

description of the interrupt vectored processing mode, please see Section 5.13.

 If the interrupt is configured as non-vectored, the core will jump to the common base

entry shared by all interrupts when the interrupt is taken. For a detailed description of

the interrupt non-vectored processing mode, please see Section 5.13.

6.2.11. ECLIC Interrupt Threshold Level

As shown in Figure 6-1, the ECLIC can set the threshold level (mth) of a specific interrupt

threshold level. The key points are as follows:：

 The mth register is an 8-bit register, all bits are readable and writable, and the

software can write this register to configure the threshold. Note: this threshold

indicates a level value.

 Only when the level of the interrupt finally arbitrated by the ECLIC is higher than the

value in the mth register, the interrupt can be sent to the processor core.

6.2.12. ECLIC Interrupt Arbitration Mechanism

As shown in Figure 6-2, the principles for the ECLIC to arbitrate all of its interrupt sources

are as follows:

www.riscv-mcu.com Page 79

 Only interrupt sources that meet all of the following conditions can participate in the

arbitration:

 The enable bit (clicintie[i]) of the interrupt source must be 1.

 The pending bit (clicintip[i]) of the interrupt source must be 1.

 The rules for the arbitration among all participated interrupt sources are:

 First, determine the level, the larger the level value of the interrupt source, the

higher the arbitration priority.

 If the level is equal, then the interrupt source that has greater value of priority will

have higher priority in the arbitration.

 If both level and priority are equal, then the ID is taken into the consideration. The

interrupt source with the larger interrupt ID has higher arbitration priority.

 If the level value of the interrupt source that wins the arbitration has a greater value of

level than the value in mth, then the interrupt request is initiate and the corresponding

interrupt request signal to the core will be asserted.

6.2.13. ECLIC Interrupt Taken, Preemption and Tail-Chaining

After the ECLIC interrupt request is sent to the processor core, the core will respond to it.

Through the coordination by the ECLIC and the core, the operation of interrupt preemption and

tail-chaining are supported. Please see Section 5.6, Section 5.11, and Section 5.12 for more

details.

www.riscv-mcu.com Page 80

7. Bumblebee Core CSRs Descriptions

7.1.Bumblebee Core CSRs Overview

In the RISC-V ISA, there are some CRSs (control and status registers) which control and

record the status of processor. CSRs are the registers inside the core. And the standard RISC-V

ISA sets aside a 12-bit encoding space for CSRs.

7.2. Bumblebee Core CSRs List

Table 7-1 describes the CSRs in the Bumblebee Core. In this CSRs List, there are RISC-V

standard CSRs (RV32IMAC ISA support Machine Mode and User Mode) and customized CSRs

in the Bumblebee Core.

Table 7-1 CSR supported in the Bumblebee Core

Type Address R &W Name Description

RISC-V Standard
CSR （Machine
Mode）

0xF11 MRO mvendorid Machine Vendor ID Register

0xF12 MRO marchid Machine Architecture ID Register

0xF13 MRO mimpid Machine Implementation ID Register

0xF14 MRO mhartid Hart ID Register

0x300 MRW mstatus Machine Status Register

0x301 MRO misa Machine ISA Register

0x304 MRW mie Machine Interrupt Enable Register

0x305 MRW mtvec Machine Trap-Vector Base-Address
Register

0x307 MRW mtvt ECLIC Interrupt Vector Table Base
Address

0x340 MRW mscratch Machine Scratch Register

0x341 MRW mepc Machine Exception Program Counter

0x342 MRW mcause Machine Cause Register

0x343 MRW mtval Machine Trap Value Register

0x344 MRW mip Machine Interrupt Pending Register

Ox345 MRW mnxti The next interrupt handler address and
enable modifier.

0x346 MRO mintstatus Current Interrupt Levels

0x348 MRW mscratchcsw Scratch swap register for privileged
mode.

0x349 MRW mscratchcswl Scratch swap register for interrupt
levels.

www.riscv-mcu.com Page 81

0xB00 MRW mcycle Lower 32 bits of Cycle counter

0xB80 MRW mcycleh Upper 32 bits of Cycle counter

0xB02 MRW minstret Lower 32 bits of Instructions-retired
counter

0xB82 MRW minstreth Upper 32 bits of Instructions-retired
counter

RISC-V Standard
CSR （User
Mode）

0xC00 URO cycle mcycle read only copy

0xC01 URO time mtime read only copy

0xC02 URO instret minstret read only copy

0xC80 URO cycleh mcycleh read only copy

0xC81 URO timeh mtimeh read only copy

0xC82 URO instreth minstreth read only copy

Bumblebee
Customized
CSR

0x320 MRW mcountinhibit Customized register for counters on &
off

0x7c3 MRO mnvec NMI Entry Address

0x7c4 MRW msubm Customized Register Storing Type of
Trap

0x7d0 MRW mmisc_ctl Customized Register holding NMI
Handler Entry Address

0x7d6 MRW msavestatus Customized Register holding the value
of mstatus

0x7d7 MRW msaveepc1 Customized Register holding the value
of mepc for the first-level preempted
NMI or Exception.

0x7d8 MRW msavecause1 Customized Register holding the value
of mcause for the first-level preempted
NMI or Exception.

0x7d9 MRW msaveepc2 Customized Register holding the value
of mepc for the second-level preempted
NMI or Exception.

0x7da MRW msavecause2 Customized Register holding the value
of mcause for the second-level
preempted NMI or Exception.

0x7eb MRW pushmsubm Push msubm to stack

0x7ec MRW mtvt2 ECLIC non-vectored interrupt handler
address register

0x7ed MRW jalmnxti Jumping to next interrupt handler
address and interrupt-enable register

0x7ee MRW pushmcause Push mcause to stack

0x7ef MRW pushmepc Push mepc to stack

0x811 MRW sleepvalue WFI Sleep Mode Register

0x812 MRW txevt Send Event Register

0x810 MRW wfe Wait for Event Control Register

Note：

 MRW -- Machine Mode Readable/Writeable

 MRO -- Machine Mode Read-Only

 URW -- User Mode Readable/Writeable

 URO -- User Mode Read-Only

www.riscv-mcu.com Page 82

7.3. Accessibility of CSR in the Bumblebee Core

The CSRs read and write rule in the Bumblebee core:
 No matter in Machine Mode or User Mode:

 If CSR register address not exist, there will be an Illegal Instruction Exception.

 In Machine Mode:

 For MRW or URW CSRs, read and write operations go well.

 For MRO or URO CSRs, read operation goes well.

 If trying to write data in MRO and URO CSRs, there will be an Illegal Instruction

Exception.

 In User Mode:

 For URW CSRs, read and write operations go well.

 For URO CSRs, read operation goes well.

 Note：For URO registers like cycle、cycleh、time、timeh、instret、instreth, read

permissions are decided by relevant field in mcounteren, See Section 7.4.29 for

more information.

 If trying to write data in URO CSRs, there will be an Illegal Instruction Exception.

 If trying to write data in MRO and MRW CSRs, there will be an Illegal Instruction

Exception.

7.4. Bumblebee Core RISC-V Standard CSR

This chapter introduces the RISC-V Standard CSRs in the Bumblebee Core (RV32IMAC,

support Machine Mode and User Mode).

www.riscv-mcu.com Page 83

7.4.1. misa

misa CSR is used to report the ISA supported by the hart.

The highest 2 bits represent current register width of the machine:

 If the value of highest two bits is 1, current architecture is RV32.

 If the value of highest two bits is 2, current architecture is RV64.

 If the value of highest two bits is 3, current architecture is RV128.

The [25:0] bits of misa CSR encodes the presence of the standard extension, with a single

bit per letter of the alphabet (bit 0 encodes presence of extension A" , bit 1 encodes presence of

extension B", through to bit 25 which encodes Z"). Figure 7-1 show the description of each

alphabet . The bits that not used in this register are reserved 0.

Figure 7-1 Encoding of [25:0] field in misa.

www.riscv-mcu.com Page 84

Note: misa CSR is defined as a readable and writable register on RISC-V SPEC, which allows

some kinds of processor change the value of misa dynamically. However, in the Bumblebee

design, misa is a readable only register which shows what extension supported in the processor.

7.4.2. mie

The mie CSR is not used under the ECLIC interrupt mode, the read value of mie is always 0.

7.4.3. mvendorid

This CSR is a read-only register providing the Vendor ID of the provider of the core.

If the value of this register is 0, it means the register is not implemented.

7.4.4. marchid

This CSR is a read-only register encoding the microarchitecture ID of the processor.

If the value of this register is 0, it means the register is not implemented

7.4.5. mimpid

This CSR is a read-only register provide a unique encoding of the version of the processor

implementation which named as implementation ID.

7.4.6. mhartid

This CSR is a read-only register containing the integer ID of the hardware thread running

the code.

Hart means hardware thread. In each single core, there may exist multiple threads such as

www.riscv-mcu.com Page 85

Hyper-threading technique. Each thread has it own register files but shares most of the data

processing resources. In this kind of Hyper-threading processor, a core will have multiple hart.

In the Bumblebee, hart ID is controlled by signal core_mhartid. Note: According to RISC-V

architecture, we must ensure exactly one hart runs some code and so require one hart to have a

known hart ID of 0.

7.4.7. mstatus

The mstatus CSR is the status register under the Machine-mode. The format of the mstatus

register is shown in Table 7-2。

Table 7-2 mstatus register

Field bit Reset Description

Reserved 2:0 N/A Reserved 0

MIE 3 0 See chapter 7.4.9 for more detail.

Reserved 6:4 N/A Reserved 0

MPIE 7 0 See chapter 7.4.9 for more detail.

Reserved 10:8 N/A Reserved 0

MPP 12:11 0 See chapter 7.4.9 for more detail.

FS 14:13 0 See chapter 7.4.10 for more detail.

XS 16:15 0 See chapter 7.4.11 for more detail.

Reserved 17 N/A Not used bit.

Reserved 30:18 N/A Reserved 0

SD 31 0 See chapter 7.4.12 for more detail.

7.4.8. The mie field in mstatus

The mie filed in mstatus control interrupt enable function.

When mie equals 1, interrupts are enabled.

When mie equals 0, interrupts are disabled.

www.riscv-mcu.com Page 86

Note: In the Bumblebee core, when the processor start to work in exception, interrupt or

nmi mode, mie filed will update to 0 which means interrupts are blocked in exception, interrupt

or nmi mode.

7.4.9. The MPIE and MPP fields in mstatus

The MPIE and MPP fields in mstatus help to save mstatus.MIE value before core entering

exception, interrupt and NMI mode, and recover it automatically in privilege mode.

When the Bumblebee core has exception, MPIE and MPP fields will be updated. See chapter

3.4.5 for more detail.

When the Bumblebee core quits exception mode (mret instruction in handler), MPIE and

MPP fields will be updated. See chapter 3.5.2 for more detail.

When the Bumblebee core has NMI, MPIE and MPP fileds will be updated. See chapter

4.3.4 for more detail.

When the Bumblebee core quits NMI mode (mret instruction in handler), MPIE and MPP

fields will be updated. See chapter 4.4.2 for more detail.

When the Bumblebee core has interrupts, MPIE and MPP fields will be updated. See

chapter 5.6.5 for more detail.

When the Bumblebee core quits interrupts mode (mret instruction in handler), MPIE and

MPP fields will be updated. See chapter 5.7.2 for more detail.

Note: The mstatus.MPIE and mstatus.MPP are the mirror images of mcause.MPIE and

mcause.MPP. Normally, the value of mstatus.MPIE and mstatus.MPP are the same as the value

of mcause.MPIE and mcause.MPP.

7.4.10. The FS field in mstatus

The FS field in mstatus encodes the status of the floating-point unit.

www.riscv-mcu.com Page 87

The FS field contains 2 bits, the encoding of FS field is listed as the following figure:

Figure 7-2 FS Field Status Encode

The rule of updating FS field:

 When the core turned on, the default value is 0, which means the FPU status is off. In

order to use FPU, software need a CSR write instruction to change the value of FS into a

non-zero value that turn on FPU.

 If the FS field is 1 or 2, after a FP instruction executed, FS field will be changed to 3

which indicates the status of FPU is dirty(changed).

 If the processor don’t want to use FPU (e.g. turn off FPU for low power consumption), a

CSR write instruction can set the mstatus.FS to 0 which will turn off FPU. After FPU is

off, any operations access to floating-point CSR and floating-point instructions will

generate an illegal instruction exception.

Besides, FS field can be checked by a context switch routine to quickly determine whether a

state save or restore is required. See The RISC-V Instruction Set Manual v1.10 for more

information if interested.

7.4.11. The XS field in mstatus.

The XS field is similar to FS field and encodes the status of additional user-mode extensions

and associated state

According to standard RISC-V “Privileged Architecture Document Version 1.10”, XS field is

a read-only field. Note please, in the Bumblebee core, XS field is a read and write field. The

www.riscv-mcu.com Page 88

function of XS is like that of FS. Software is able to change the value of XS to turn on or off the

additional user-mode extensions unit.

Like FS field, XS field can be checked by a context switch routine to quickly determine

whether a state save or restore is required. See The RISC-V Instruction Set Manual v1.10 for

more information if interested.

7.4.12. The SD field in mstatus

The SD bit is a read-only bit that summarizes whether either the FS field or XS field signals

the presence of some dirty state that will require saving extended user context to memory. The

logic expression between FS, XS and SD is: SD = ((FS == 11)) or (DS == 11).

The SD bit is read-only and is set to quickly find either the FS or XS bits encode a Dirty state.

And SD field can be checked by a context switch routine to quickly determine whether a state

save or restore is required in FPU or additional extensions unit

7.4.13.mtvec

The mtvec register holds trap vector configuration, consisting of a vector base address

(BASE) and a vector mode (MODE)
 When mtvec holds the exception entry address:

 The value of the address field must always be aligned on a 4-byte boundary

 When mtvec holds the interrupt entry address:

 When mtvec.MODE != 6’b000011, processor uses default interrupt mode.

 When mtvec.MODE = 6’b000011, processor uses ECLIC interrupt mode

(recommend).

 See chapter 5.13.2 for more information about interrupt non-vectored mode

entry address.

 See chapter 5.13.1 for more information about interrupt vectored mode entry

www.riscv-mcu.com Page 89

address.

Field of mtvec register is shown in Table 7-3.

Table 7-3 mtvec register

Field Bit Description

ADDR 31:6 mtvec address

MODE 5:0 MODE field determine interrupt mode：
 000011: ECLIC interrupt mode(recommend)
 Others: Default interrupt mode

7.4.14.mtvt

The mtvt register holds the base address of ECLIC vector interrupts, and the base address is

aligned at least 64-byte boundary.

In order to improve the performance and reduce the gate count, the alignment of the base

address in mtvt is determined by the actual number of interrupts, which is shown in the

following table.

Table 7-4 mtvt alignment

Max interrupt number mtvt alignment
0 to 16 64-byte

17 to 32 128-byte

33 to 64 256-byte

65 to 128 512-byte

129 to 256 1KB

257 to 512 2KB

513 to 1024 4KB

1025 to 2048 8KB

2045 to 4096 16KB

7.4.15.mscratch

www.riscv-mcu.com Page 90

The mscratch register is used by programs in Machine Mode to temporarily save some

specified data. The mscratch register provides a save and restore mechanism. For example, after

entering the interrupt or exception handling mode, the application's stack pointer (SP) register

is temporarily stored in the mscratch register. Before exiting the exception handler, the value in

mscratch is used to restore the Stack Pointer (SP) register.

7.4.16.mepc

The mepc register is written with the virtual address of the instruction that encountered the

exception, and the processor will return to this address after the exception finish.

Note:

 When an instruction encounters an exception, mepc register will be updated to the

instruction PC address

 Though mepc register can be updated automatically by hardware when there is an

exception, mepc is a readable and writable register. So, software can also modify the

value of the register directly.

Field of mepc register is shown in Table 7-5.

Table 7-5 mepc register

Field Bit Description

EPC 31：1 The PC address of the instruction that encountered the exception

Reserved 0 Reserved 0

7.4.17.mcause

The mcause is written with a code indicating the reason that caused the trap.

The mcause register is formatted as shown in Table 7-6.

www.riscv-mcu.com Page 91

Table 7-6 mcause register

Field Bit Description

INTERRUPT 31 Current trap type：
 0: Exception or NMI
 1: Interrupt

MINHV 30 Indicate processer is reading interrupt vector table.

MPP 29:28 privilege mode before interrupt, the same as mstatus.mpp

MPIE 27 Interrupt enable before interrupt, the same as mstatus.mpie

Reserved 26:24 Reserved 0

MPIL 23:16 Previous interrupt level

Reserved 15:12 Reserved 0

EXCCODE 11:0 Exception/Interrupt Encoding

Note:

 he mstatus.MPIE and mstatus.MPP are the mirror images of mcause.MPIE and

mcause.MPP.

 The mcause.EXCCODE of NMI can be 0x1 or 0xfff，the value is controlled by mmisc_ctl,

see more detail in Section 7.5.4..

7.4.18.mtval (mbadaddr)

The mtval register (mbadaddr in the previous specification) is written with the faulting

effective address or faulting instruction code to assist software in handling the trap.

In order to understand this register, please see chapter 0 to learn more about exception.

When the Bumblebee core takes an exception, mtval is written with exception-specific

information.

7.4.19.mip

The mip register has NO effect when interrupt handling mode is ECLIC, and return data are

all zeros while reading the register

www.riscv-mcu.com Page 92

7.4.20.mnxti

The mnxti register（Next Interrupt Handler Address and Interrupt-Enable CSR）can be used

by software to service the next interrupt when it is in the same privilege mode, without incurring

the full cost of an interrupt pipeline flush and context save/restore.

The mnxti CSR is designed to be accessed using CSRRSI/CSRRCI instructions, where the

value read is the next interrupt handler address and the write back updates the interrupt-enable

status.

Note:

1. If the next interrupt is not executed in the same privilege mode, the processor will take

the next interrupt directly in a nested way, and mnxti only work when the next interrupt is in the

same privilege mode.

2. The mnxri CSR instruction is not the same as normal CSR instructions, the return value is

different.

 The return value of mnxti CSR read instruction is shown below:

 For the following situations, return 0

 No valid interrupt.

 The highest priority interrupt is vectored.

 When the interrupt non-vectored, return the interrupt entry address

 The mnxti CSR write operation will update following register:

 The mstatus register is the RMW（read-modify-write）operation target register.

 The mcause.EXCCODE field will be updated to the value of the corresponding

ID of the taken interrupt.

 The mintstatus.MIL will be updated to current interrupt level.

www.riscv-mcu.com Page 93

7.4.21.mintstatus

The mintstatus register holds the active interrupt level for all the privilege mode.

Table 7-7 minstatus register

Field Bit Description

MIL 31:24 The active interrupt level in machine mode

Reserved 23：8 Reserved 0

UIL 7:0 The active interrupt level in user mode

7.4.22.mscratchcsw

The mscratchcsw register is useful to swap the value between target register and mscratch

when privilege mode change.

Using CSR read instruction to operate mscratchcsw, when the privilege mode change after

an interrupt, there will be pseudo instruction operation shown below:

csrrw rd， mscratchcsw， rs1

// Pseudocode operation.
if （mcause.mpp!=M-mode） then {

t = rs1; rd = mscratch; mscratch = t;
} else {

rd = rs1; // mscratch unchanged.
}

// Usual use: csrrw sp， mscratchcsw， sp

When processor takes an interrupt in low privilege mode, processor enters high privilege

mode to handle the interrupt and need stacks to store the status of processor before the

interrupt. If the processor continues to use SP in low privilege mode, the data in high privilege

mode will be stored in the area which can be accessed in low privilege mode and cause safety

error. RISC-V define that when the processor is in low privilege mode, data in SP of high

www.riscv-mcu.com Page 94

privilege mode should be stored in mscratch. And in this way, SP will be recovered from

mscratch when the processor enters high privilege mode.

It will cost a lot of cycles to running the program above, so RISC-V define mscratchcsw

register. After entering an interrupt, processor run a mscratchcsw CSR instruction to swap the

value between mscratch and SP to make SP in high privilege mode recovered. At the same time,

copy data in low privilege mode SP to mscratch. Before mret instruction, add a mscratchcsw

instruction to swap value between mscratch and SP. It will make low privilege mode SP

recovered and store high privilege mode SP to mscratch again. It is really convenient to use these

2 instructions to solve the SP problem and speed up the interrupt handling.

Note: to avoid virtualization vulnerabilities, the software cannot directly read the core’s

current privilege mode. If the software attempts to access the mscratchcsw register to perform a

swap operation, the processor will take a trap, so the register mscratchcsw does not cause a

virtualization vulnerability.

7.4.23.mscratchcswl

The mscratchcswl register is used to exchange the destination register with the value of

mscratch to speed up interrupt processing when switching between multiple interrupt levels.

Using the CSR instruction to read the register mscratchcsw, with unchanged privilege mode,

the following register operations are performed when there is a switch between the interrupt

handler and the application program:

csrrw rd， mscratchcswl， rs1

// Pseudocode operation.
if （ （mcause.mpil==0） != （mintstatus.mil == 0） ） then {

t = rs1; rd = mscratch; mscratch = t;
} else {

rd = rs1; // mscratch unchanged.
}

// Usual use: csrrw sp， mscratchcswl， sp

In single privilege mode, separating the interrupt handler task from the task space of the

www.riscv-mcu.com Page 95

application task can increase robustness, reduce space usage, and facilitate system debugging.

The interrupt handler has a non-zero interrupt level while the application task has a zero

interrupt level. According to this feature, the RISC-V architecture defines the mscratchcswl

register. Similar to mscratchcsw, adding a register instruction of mscratchcswl to the beginning

and the end of the interrupt service routine enables a fast stack pointer switch between the

interrupt handler and the application, ensuring the separation of the stack space between the

interrupt handler and the application.

7.4.24.mcycle and mcycleh

The RISC-V architecture define a 64-bits width cycle counter which indicates how many

cycles has the processor executed. Whenever the processor is working, the counter will increase

automatically.

The mcycle register records the low 32-bits of counter and mcycleh records the high 32-bits.

The mcycle and mcycleh show the performance of the processor. And they are RW registers,

software can change the value of them with CSR instruction.

Considering the counter has power consumption, there is an extra bit in the customized CSR

mcountinhibit that can turn off the counter to save power when users don’t need to learn the

performance of the professor through the counter. See chapter 7.5.1 for more information about

mcountinhibit.

Note: In debug mode, counter doesn’t work. The counter only works when the processor

works normally.

7.4.25.minstret and minstreth

The RISC-V architecture define a 64-bits width counter which records how many

instructions have been executed successfully. Whenever an instruction is done, the counter

www.riscv-mcu.com Page 96

number will plus one.

The minstret register records the low 32-bits of counter and minstreth records the high

32-bits.

The minstret and minstreth show the performance of the processor. And they are RW

registers, software can change the value of them with CSR instruction.

Considering the counter has power consumption, there is an extra bit in the customized CSR

mcountinhibit that can turn off the counter to save power when users don’t need to learn the

performance of the professor through the counter. See chapter 7.5.1 for more information about

mcountinhibit.

Note: In debug mode, counter doesn’t work. The counter only works when the processor

works normally.

7.4.26. cycle and cycleh

The cycle and cycleh are read-only shadows of mcycle and mcycleh. In user mode, CSR

mcounteren.CY field determines if cycle and cycleh are readable. See Section 7.4.29 for more

information.

7.4.27. instret and instreth

The instret and instreth are read-only shadows of minstret and minstreth. In user mode,

CSR mcounteren.IR field determines if instret and instreth are readable. See Section 7.4.29 for

more information.

7.4.28. time and timeh

The time and timeh are read-only shadows of mtime and mtimeh. In user mode, CSR

mcounteren.TM field determines if time and timeh are readable. See Section 7.4.29 for more

information.

www.riscv-mcu.com Page 97

7.4.29.mcounteren

The mcounteren register only exists when the processor support user mode. The format of

mcounteren register is shown in Table 7-8.

Table 7-8 mcounteren register

Field Bit Description

CY 0 The bit control if cycle and cycleh registers are readable in user mode：
 If this bit is 1, cycle and cycleh are readable in user mode。
 If this bit is 0, reading cycle and cycleh will trigger illegal instruction exception in user

mode
Reset default value is 0.

TM 1 The bit control if time and timeh registers are readable in user mode：
 If this bit is 1, time and timeh are readable in user mode。
 If this bit is 0, reading time and timeh will trigger illegal instruction exception in user

mode
Reset default value is 0.

IR 2 The bit control if instret and instreth registers are readable in user mode：
 If this bit is 1, instret and instreth are readable in user mode。
 If this bit is 0, reading instret and instreth will trigger illegal instruction exception in

user mode
Reset default value is 0.

Reserv
ed

3~31 Reserved 0

7.5. Bumblebee Core Customized CSR

This section introduces customized CSRs in the Bumblebee core

7.5.1. mcountinhibit

The mcountinhibit register controls mcycle and minstret registers. The format of

mcountinhibit is shown in Table 7-9.

Table 7-9 mcountinhibit register

www.riscv-mcu.com Page 98

Field Bit Description

Reserved 31:3 Reserved 0

IR 2 When IR is 1, minstret is off

Reserved 1 Reserved 0

CY 0 When CY is 1, mcycle is off

7.5.2. mnvec

The mnvec register holds the NMI entry address.

In order to understand this register, please see chapter 4 for more information about NMI.

During a processor running a program, the program will be forced to jump into a new PC

address when a NMI triggered. The PC address is determined by mnvec.

Note: The value of mnvec is controlled by mmisc_ctl, see more information in chapter 7.5.4.

7.5.3. msubm

The Bumblebee Core customized CSR msubm register holds the current trap type and the

trap type before the current trap.

The format of msubm register is shown in Table 7-10.

Table 7-10 msubm register

Field Bit Description

Reserved 31:10 Reserved 0

PTYP 9:8 Trap type before entering a new trap:
 0：No-Trap
 1：Interrupt
 2：Exception
 3：NMI

TYP 7:6 Current trap type:
 0：No-Trap
 1：Interrupt
 2：Exception

www.riscv-mcu.com Page 99

 3：NMI
Reserved 5:0 Reserved 0

7.5.4. mmisc_ctl

The Bumblebee Core customized CSR mmisc_ctl controls the value of mnvec and the

mcause value of NMI.

The format of mmisc_ctl is shown in Table 7-11.

Table 7-11 mmisc_ctl register

Field Bit Description

Reserved 31:10 Reserved 0

NMI_CAUSE_
FFF

9 Control mnvec and mcause.EXCCODE of NMI:
 0：The value of mnvec equals the PC address after reset,

mcause.EXCCODE of NMI is 0x1.
 1：The value of mnvec is the same as the value of mnvec ,

mcause.EXCCODE of NMI is 0xfff
Reserved 8:0 Reserved 0

7.5.5. msavestatus

The msavestatus holds the value of mstatus and msubm which guarantee mstatus and

msubm will not be flushed by NMI or exception. The msavestatus has two-stage stack, and

supports up to 3-level NMI/Exception state save. See Section 4.6 for more information.

The format of msavestatus register is shown in Table 7-12.

Table 7-12 msavestatus register

Field Bit Description

Reserved 31:16 Reserved 0

PTYP2 15:14 The trap type before taking the second-level NMI/Exception.

Reserved 13:11 Reserved 0

MPP2 10:9 The privilege mode before taking the second-level NMI/Exception.

MPIE2 8 The interrupt enable bit before taking the second-level NMI/Exception.

PTYP1 7:6 The trap type before taking the first-level NMI/Exception.

www.riscv-mcu.com Page 100

Reserved 5:3 Reserved 0

MPP1 2:1 The privilege mode before taking the second-level NMI/Exception.

MPIE1 0 The interrupt enable bit before taking the second-level NMI/Exception.

7.5.6. msaveepc1 and msaveepc2

msaveepc1 and msaveepc2 are registers of the first-level NMI/Exception status stack and

the second-level NMI/Exception status stack, used to save the PC before the first-level

NMI/Exception preemption and the second-level NMI/Exception preemption respectively.

 msaveepc2 <= msaveepc1 <= mepc <= interrupted PC <= NMI/exception PC

Executing the mret instruction, and the value of mcause.INTERRUPT is 0 (Such as NMI or

exception), msaveepc1 and msaveepc2 are used to restore the PC through the first and second

level NMI/Exception Status Stacks.

 msaveepc2 => msaveepc1 => mepc => PC

7.5.7. msavecause1 and msavecause2

msavecause1 and msavecause2 are registers of the first-level NMI/Exception status stack

and the second-level NMI/Exception status stack, used to save the mcause before the first-level

NMI/Exception preemption and the second-level NMI/Exception preemption respectively.

 msavecause2 <= msavecause1 <= mcause <= NMI/exception cause

Executing the mret instruction, and the value of mcause.INTERRUPT is 0 (Such as NMI or

exception), msavecause1 and msavecause2 are used to restore the PC through the first and

second level NMI/Exception Status Stacks.

 msavecause2 => msavecause1 => mcause

7.5.8. pushmsubm

www.riscv-mcu.com Page 101

The Bumblebee Core customized CSR pushmsubm provides a method to store the value of

msubm in memory space which base address is SP with CSR instruction csrrwi.

For example:

csrrwi x0， PUSHMSUBM， 1

This instruction stores the value of msubm in SP+1*4 address.

7.5.9. mtvt2

mtvt2 is used to indicate the entry address of the common base handler shared by all

ECLIC non-vectored interrupts.

The bits assignment of the register mtvt2 are shown in the table below:

Table 7-13 mtvt2 register

Field Bit Description

CMMON-COD
E-ENTRY

31:2 When mtvt2.MTVT2EN=1，this field determines the entry
address of interrupt common code in ECLIC non-vector mode.

Reserved 1 Reserved 0

MTVT2EN 0 mtvt2 enable：
 0：the entry address of interrupt common code in ECLIC

non-vector mode is determined by mtvec
 1: the entry address of interrupt common code in ECLIC

non-vector mode is determined by mtvt2.COMMON-CODE-ENTRY

7.5.10. jalmnxti

The Bumblebee Core customized CSR reduces the delay for interrupt and accelerates

interrupt tail-chaining.

In the jalmnxti, in addition to enabling the interrupt in mnxri, handling the next interrupt

and jumping to the next interrupt entry address, it can jump to the interrupt handler. So, the

jalmnxti can decrease the instruction numbers to speed up the interrupt handling. See more

information about jalmnxti in Section 5.13.1.3.

www.riscv-mcu.com Page 102

7.5.11. pushmcause

The Bumblebee Core customized CSR pushmcause provides a method to store the value of

mcause in memory space which base address is SP with CSR instruction csrrwi.

For example:

csrrwi x0， PUSHMCAUSE， 1

This instruction stores the value of mcause in SP+1*4 address.

7.5.12. pushmepc

The Bumblebee Core customized CSR pushmepc provides a method to store the value of

mepc in memory space which base address is SP with CSR instruction csrrwi.

For example:

csrrwi x0， PUSHMPEC， 1

This instruction stores the value of mepc in SP+1*4 address.

7.5.13. sleepvalue

The Bumblebee Core customized CSR sleepvalue controls different sleep mode. See Section

8.1 for more information. The format of sleepvalue register is shown in the table below:

Table 7-14 sleepvalue register

Field Bit Description

SLEEPVALUE 0 Control WFI sleep mode:
 0：shallow sleep mode (After WFI, core_clk is off)
 1：deep sleep mode (After WFI, core_clk and core_aon_clk

are off)
Reset default value is 0.

Reserved 31:1 Reserved 0

www.riscv-mcu.com Page 103

7.5.14. txevt

The Bumblebee Core customized CSR txevt controls output events.

The format of txevt register is shown in Table 7-15.

Table 7-15 txevt register

Field Bit Description

TXEVT 0 Event control：
 If this bit is 1，Bumblebee core will trigger a single-cycle

pulse signal tx_evt as event signal.
 This bit will be automatically reset to 0 in the next cycle

when it becomes 1.
 No response, when this bit is 0.
Reset default value is 0.

Reserved 31:1 Reserved 0

7.5.15.wfe

The Bumblebee Core customized CSR wfe Control whether the processor can be awaken by

interrupt or event. See chapter 8.2.3 for more information.

The format of wfe register is shown in Table 7-16.

Table 7-16 wfe register

Field Bit Description

WFE 0 Control whether the processor can be awakened by interrupt or
event.
 0: The processor can be awakened by interrupt and NMI in

sleep mode.
 1: The processor can be awakened by event and NMI in sleep

mode.
Reset default value is 0.

Reserved 31:1 Reserved 0

www.riscv-mcu.com Page 104

8. Bumblebee Low-Power Mechanism

The Bumblebee Core can support sleep mode for lower static power consumption.

8.1. Enter the Sleep Mode

The Bumblebee Core can enter sleep mode by executing the WFI instruction. When the core

executes the WFI instruction, it will perform following operations”

 Stop executing the current instruction stream immediately.

 Waiting for the core to complete any outstanding transactions, such as fetching

instructions, load or store operations, to ensure that all the transactions sent to the bus

are completed;

 Note: if a memory access error exception occurs while waiting for a bus operation to

complete, the core will enter the exception handling mode rather than sleep mode.

 When all of the outstanding transactions are completed, the core safely enters an idle

state, which is referred to as the sleep mode.

 When entered the sleep mode:

 The clocks of the main units inside the Bumblebee Core will be gated off to save

static power consumption;

 The output signal core_wfi_mode of the Bumblebee Core will be asserted to

indicate that this core is in the sleep mode after executing the WFI instruction;

 The output signal core_sleep_value of the Bumblebee Core will output the value of

the CSR register sleepvalue (Note: this signal is valid only when the core_wfi_mode

is asserted; if the signal core_wfi_mode is 0, then the value of core_sleeep_value

must be 0). The software can indicate different sleep modes (0 or 1) by configuring

the CSR register sleepvalue in advance. Note:

 The Bumblebee Core behaves exactly the same for different sleep modes. These

www.riscv-mcu.com Page 105

sleep modes only provide different controlling scheme for the Power

Management Unit (PMU) at the SoC system level.

8.2. Exit the Sleep Mode

The key points of the Bumblebee Core exiting the sleep mode are as follows:

 The output signal core_wfi_mode of the Bumblebee Core is cleared to 0.

 The Bumblebee Core can be woken up in four ways:

 NMI

 Interrupt

 Event

 Debug request

These will be described in detail below.

8.2.1. Wake Up by NMI

NMI can always wake up the core. When the core detects a rising edge of the input signal

nmi, the core is woken up and jumps to the NMI service routine.

8.2.2. Wake Up by Interrupt

Interrupts can wake up the core as well:

 If the value of wfe.WFE is set to 0, then:

 If the mstatus.MIE field is set to 1 (indicating that the global interrupt is enabled):

 When the ECLIC has sent the interrupt selected by the arbitration of external

interrupts to the processor core, the core will be woken up and jump to the

www.riscv-mcu.com Page 106

interrupt service routine.

 If the mstatus.MIE is set to 0 (indicating that the global interrupt is disabled):

 When the ECLIC has sent the interrupt selected by the arbitration of external

interrupts to the processor core, the core will be woken up and continue to

execute the previous instruction instead of jumping to the interrupt service

routine.

 If the value of wfe.WFE is set to 1, the core will be waited for an event to wake up. Please

see the detailed description in the next section.

8.2.3. Wake Up by Event

Event can wake up the processor core when the following conditions are met:

 If the value of wfe.WFE is set to 1, then:

 When the core detects that the input signal rx_evt (called the event signal) is

asserted, the core will be woken up and continue to execute the previously

interrupted instruction stream (instead of entering the interrupt service routine).

8.2.4. Wake Up by Debug Request

Debug requests can always wake up the core. If the debugger is connected, it will also wake

up the core and enter the debug mode.

8.3. Wait for Interrupt Mechanism

The Wait for Interrupt mechanism refers to make the core enter the sleep mode, and the

core keeps waiting for an interrupt to wake up. When the core wakes up, it jumps to the

corresponding interrupt service routine.

As described in Section 8.1 and Section 8.2, the Wait for Interrupt mechanism can be

www.riscv-mcu.com Page 107

implemented by executing the WFI instruction with setting the value of mstatus.MIE to 1.

8.4. Wait for Event Mechanism

The Wait for Event mechanism refers to make the core enter the sleep mode, and the core

keeps waiting for an interrupt to wake up. When the core wakes up, it continues to execute the

previously interrupted instruction stream instead of jumping to the corresponding interrupt

service routine.

As mentioned in Section 8.1 and Section 8.2, the Wait for Event mechanism can be

implemented by executing the WFI instruction combined with the following sequence of

instructions:

First step: set the value of wfe.WFE to 1.

Second step: execute the WFI instruction. The core will stay in the sleep mode until an event or NMI wakes it up.

Third step: restore the value of wfe.WFE to 0.

	Revision History
	List of Tables
	List of Figures
	1.Introduction of the Instruction Set and CSRs of th
	1.1.Introduction of the RISC-V Instruction Set Archite
	1.2.Instruction Subset Supported by the Bumblebee Core
	1.3.Control and Status Registers

	2.The Privilege Modes of The Bumblebee Core
	2.1.Introduction
	2.2.Privilege Modes
	2.2.1.Machine Mode
	2.2.2.User Mode
	2.2.3.Machine Sub-Mode
	2.2.4.Read the Execution Mode
	2.2.5.Switching from Machine Mode to User Mode
	2.2.6.Switching from User Mode to Machine Mode
	2.2.7.Interrupts, Exceptions and NMIs Preemption

	2.3.Physical Memory Protection（PMP）

	3.Exception Operation of the Bumblebee Core
	3.1.Introduction of Exception
	3.2.Exception Masking
	3.3.Priority of Exception
	3.4.Entering Exception Handling Mode
	3.4.1.Execute form the PC Defined by mtvec
	3.4.2.Update the CSR mcause
	3.4.3.Update the CSR mepc
	3.4.4.Update the CSR mtval
	3.4.5.Update the CSR mstatus
	3.4.6.Update the Privilege Mode
	3.4.7.Update the Machine Sub-Mode

	3.5.Exit the Exception Handling Mode
	3.5.1.Executing form the Address Defined by mepc
	3.5.2.Update the CSR mstatus
	3.5.3.Update the Privilege Mode
	3.5.4.Update the Machine Sub-Mode

	3.6.Exception Service Routine
	3.7.Exception Preemption

	4.NMI Operation of the Bumblebee Core
	4.1.Introduction of NMI
	4.2.NMI Masking
	4.3.Entering NMI Handling Mode
	4.3.1.Execute from the PC Defined by mnvec
	4.3.2.Update the CSR mepc
	4.3.3.Update the CSR mcause
	4.3.4.Update the CSR mstatus
	4.3.5.Update the Privilege Mode
	4.3.6.Update the Machine Sub-Mode

	4.4.Exit the NMI Handling Mode
	4.4.1.Executing from the Address Defined by mepc
	4.4.2.Update the CSR mstatus
	4.4.3.Update the Privilege Mode
	4.4.4.Update the Machine Sub-Mode

	4.5.NMI Service Routine
	4.6.NMI/Exception Preemption
	4.6.1.Enter NMI/Exception Preemption
	4.6.2.Exit NMI/Exception Preemption

	5.Interrupt Operation of the Bumblebee Core
	5.1.Introduction of Interrupt
	5.2.Enhanced Core Local Interrupt Controller （ECLIC）
	5.3.Interrupt Type
	5.3.1.External Interrupt
	5.3.2.Internal Interrupt
	5.3.2.1 Software Interrupt
	5.3.2.2 Timer Interrupt
	5.3.2.3 Memory Access Error Interrupt

	5.4.Interrupt Masking
	5.4.1.Global Interrupt Masking
	5.4.2.Specified Interrupt Masking

	5.5.Interrupt Levels, Priorities and Arbitration
	5.6.Entering Interrupt Handling Mode
	5.6.1.Execute from a new PC
	5.6.2.Update the Privilege Mode
	5.6.3.Update the Machine Sub-Mode
	5.6.4.Update the CSR mepc
	5.6.5.Update the CSRs mcause and mstatus

	5.7.Exit the Interrupt Handling Mode
	5.7.1.Executing from the Address Defined by mepc
	5.7.2.Update the CSRs mcause and mstatus
	5.7.3.Update the Privilege Mode
	5.7.4.Update the Machine Sub-Mode

	5.8.Interrupt Vector Table
	5.9.Context Saving and Restoring
	5.10.Interrupt Response Latency
	5.11.Interrupt Preemption
	5.12.Interrupt Tail-Chaining
	5.13.Vectored and Non-Vectored Processing Mode of Inter
	5.13.1.Non-Vectored Processing Mode
	5.13.1.1Feature and Latency of Non-Vectored Processing Mod
	5.13.1.2Preemption of Non-Vectored Interrupt
	5.13.1.3Non-Vectored Interrupt Tail-Chaining

	5.13.2.Vectored Processing Mode
	5.13.2.1Feature and Latency of Vectored Processing Mode
	5.13.2.2Preemption of Vectored Interrupt
	5.13.2.3Vectored Interrupt Tail-Chaining

	6.The TIMER and the ECLIC Unit of the Bumblebee Core
	6.1.Introduction of the TIMER Unit
	6.1.1.TIMER Introduction
	6.1.2.TIMER Registers
	6.1.3.Time Counter Register mtime
	6.1.4. Pause the Timer Counter through mstop
	6.1.5.Generate the Timer Interrupt through mtime and mti
	6.1.6.Generating the Software Interrupt through msip

	6.2.The ECLIC Unit
	6.2.1.Introduction of the ECLIC unit
	6.2.2. ECLIC interrupt target
	6.2.3. ECLIC Interrupt Source
	6.2.4. ECLIC Interrupt Source ID
	6.2.5. ECLIC Registers
	6.2.5.1 cliccfg
	6.2.5.2 clicinfo
	6.2.5.1 mth
	6.2.5.2 clicintip[i]
	6.2.5.3 clicintie[i]
	6.2.5.4 clicintattr[i]
	6.2.5.5 clicintctl[i]

	6.2.6. ECLIC Interrupt Enable Bit (IE)
	6.2.7. ECLIC Interrupt Pending Bit（IP）
	6.2.8. ECLIC Interrupt Source Level or Edge-Triggered At
	6.2.9. ECLIC Interrupt Level and Priority
	6.2.10. ECLICI Interrupt Vectored and Non-Vectored Proces
	6.2.11. ECLIC Interrupt Threshold Level
	6.2.12. ECLIC Interrupt Arbitration Mechanism
	6.2.13. ECLIC Interrupt Taken, Preemption and Tail-Chaini

	7.Bumblebee Core CSRs Descriptions
	7.1.Bumblebee Core CSRs Overview
	7.2.Bumblebee Core CSRs List
	7.3.Accessibility of CSR in the Bumblebee Core
	7.4.Bumblebee Core RISC-V Standard CSR
	7.4.1.misa
	7.4.2.mie
	7.4.3.mvendorid
	7.4.4.marchid
	7.4.5.mimpid
	7.4.6.mhartid
	7.4.7.mstatus
	7.4.8.The mie field in mstatus
	7.4.9.The MPIE and MPP fields in mstatus
	7.4.10.The FS field in mstatus
	7.4.11.The XS field in mstatus.
	7.4.12.The SD field in mstatus
	7.4.13.mtvec
	7.4.14.mtvt
	7.4.15.mscratch
	7.4.16.mepc
	7.4.17.mcause
	7.4.18.mtval (mbadaddr)
	7.4.19.mip
	7.4.20.mnxti
	7.4.21.mintstatus
	7.4.22.mscratchcsw
	7.4.23.mscratchcswl
	7.4.24.mcycle and mcycleh
	7.4.25.minstret and minstreth
	7.4.26.cycle and cycleh
	7.4.27.instret and instreth
	7.4.28.time and timeh
	7.4.29.mcounteren

	7.5.Bumblebee Core Customized CSR
	7.5.1.mcountinhibit
	7.5.2.mnvec
	7.5.3.msubm
	7.5.4.mmisc_ctl
	7.5.5.msavestatus
	7.5.6.msaveepc1 and msaveepc2
	7.5.7.msavecause1 and msavecause2
	7.5.8.pushmsubm
	7.5.9.mtvt2
	7.5.10.jalmnxti
	7.5.11.pushmcause
	7.5.12.pushmepc
	7.5.13.sleepvalue
	7.5.14.txevt
	7.5.15.wfe

	8.Bumblebee Low-Power Mechanism
	8.1.Enter the Sleep Mode
	8.2.Exit the Sleep Mode
	8.2.1.Wake Up by NMI
	8.2.2.Wake Up by Interrupt
	8.2.3.Wake Up by Event
	8.2.4.Wake Up by Debug Request

	8.3.Wait for Interrupt Mechanism
	8.4.Wait for Event Mechanism

